
 1
Modeling Morphogenesis with Reaction-Diffusion Equations

using Galerkin Spectral Methods
USNA

Trident Project
Benjamin M. Heineike

Project advisers:
Professor Reza Malek-Madani

Professor Sonia Garcia

Project Abstract

This project studies the nonhomogeneous steady-state solutions of the Gray-Scott model,
a system of nonlinear partial differential equations that has received attention in the past
decade in the context of pattern formation and morphogenesis. Morphogenesis, or ‘birth
of shape’, is the biological term for the initial formation of patterns that occur in
development as cells begin to differentiate. The model is a two morphogen reaction-
diffusion system in which individual molecules display complex self-organization in
aggregate.

The project is divided into two main parts. The first part develops the Galerkin Spectral
method for application to the two species reaction-diffusion system. Limitations and
capabilities of the Galerkin Spectral method are discussed in the context of the heat
equation, the Burgers equation, and the Allen-Cahn equation.

The second part analyzes the stability of equilibria in the Gray-Scott model in terms of
reaction and diffusion parameters. A region of Hopf bifurcation is identified for the
diffusionless system, and conditions for diffusion driven instability are developed. We
show in particular that diffusion driven instability will occur only when the diffusion
constants of each morphogen are different in any two species reaction-diffusion equation.
We then show some numerical simulations of pattern formation in the Gray-Scott model
using MATLAB programs to implement the Galerkin Spectral method.

Keywords: reaction-diffusion equations, morphogenesis, Gray-Scott model, Galerkin
Spectral method, Allen-Cahn equation, the Burgers equation, partial differential
equations, numerical simulations, MATLAB.

REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of
law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
06-05-2002

2. REPORT TYPE 3. DATES COVERED (FROM - TO)
xx-xx-2002 to xx-xx-2002

4. TITLE AND SUBTITLE
Modeling Morphogenesis with Reaction-Diffusion Equations using Galerkin Spectral
Methods
Unclassified

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Heineike, Benjamin M. ;

5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS
US Naval Academy
Annapolis, MD21402

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS
,

10. SPONSOR/MONITOR'S ACRONYM(S)
11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE
,
13. SUPPLEMENTARY NOTES
14. ABSTRACT
See report
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
Public Release

18.
NUMBER
OF PAGES
89

19. NAME OF RESPONSIBLE PERSON
email from USNA, Annapolis, MD, (blank)
lfenster@dtic.mil

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

19b. TELEPHONE NUMBER
International Area Code
Area Code Telephone Number
703767-9007
DSN
427-9007

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC
20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

6 May 2002
3. REPORT TYPE AND DATE COVERED

4. TITLE AND SUBTITLE

Modeling morphogenesis with reaction-diffusion equations using Galerkin spectral
methods
6. AUTHOR(S)

Heineike, Benjamin M. (Benjamin Murrary), 1980-

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER

US Naval Academy
Annapolis, MD 21402

Trident Scholar project report no.
296 (2002)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT: This project studies the nonhomogeneous steady-state solutions of the Gray-Scott model, a system of
nonlinear partial differential equations that has received attention in the past decade in the context of pattern
formation and morphogenesis. Morphogenesis, or ‘birth of shape’, is the biological term for the initial formation of
patterns that occur in development as cells begin to differentiate. The model is a two morphogen reaction-diffusion
system in which individual molecules display complex self-organization in aggregate. The project is divided into two
main parts. The first part develops the Galerkin Spectral method for application to the two species reaction-diffusion
system. Limitations and capabilities of the Galerkin Spectral method are discussed in the context of the heat
equation, the Burgers equation, and the Allen-Cahn equation. The second part analyzes the stability of equilibria in
the Gray-Scott model in terms of reaction and diffusion parameters. A region of Hopf bifurcation is identified for the
diffusionless system, and conditions for diffusion driven instability are developed. We show in particular that diffusion
driven instability will occur only when the diffusion constants of each morphogen are different in any two species
reaction-diffusion equation. We then show some numerical simulations of pattern formation in the Gray-Scott model
using MATLAB programs to implement the Galerkin Spectral method.

15. NUMBER OF PAGES

91
14. SUBJECT TERMS

reaction-diffusion equations, morphogenesis, Gray-Scott model, Galerkin Spectral
method, Allen-Cahn equation, the Burgers equation, partial differential
equations, numerical simulations, MATLAB

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298

 2
Table of Contents:

Project Abstract 1

Table of Contents 2

Introduction 3

Reaction-Diffusion Equations 9

Galerkin Spectral Methods 13

 Heat Equation 1D 23

 Burgers’ Equation 26

 Allen-Cahn Equation 30

 Heat Equation 2D 32

 Gray-Scott Equation 35

Gray-Scott Model 41

Results 58

Bibliography 67

Appendix - MATLAB PROGRAMS A-1

 3

Reaction-Diffusion Equations and Morphogenesis using Galerkin Methods

USNA
Trident Project

Benjamin M. Heineike
Project advisers:

Professor Reza Malek-Madani
Associate Professor Sonia Garcia

1. Introduction: Modeling Morphogenesis

 In the context of embryology, morphogenesis is, as its Greek roots suggests, the part of

the process of development where shape and form begin to emerge. The process by which each

nearly identical stem cell makes the initial decision to take the unique pathway that leads it to

fulfill its role as a specialized, functional cell in the fully-grown organism is still largely a

mystery. After the cells have taken those first steps, their subsequent development is better

understood, but the nature of the initial impulse that causes one cell to become a muscle cell and

another to become a nerve cell is just beginning to be understood.

Two years before Alan Turing died in 1954, he published a paper entitled “The Chemical

Basis of Morphogenesis” in the Philisophical Transactions of the Royal Society of London[25]

that had a much different flavor than the work on computing machines and artificial intelligence

for which he was so famous. Today his paper is the cornerstone of a body of scientific literature

suggesting that the basis of morphogenesis lies in the pattern formation capabilities of certain

chemicals thought to be present in an early embryo, which Turing dubbed morphogens.

According to the theory, by the time the genes begin to create proteins in a growing embryo,

there is already a chemical pattern of morphogens present in the background of the tissue. These

morphogens interact physically and chemically with one another to create patterns. These

chemical patterns provide initial developmental signals to the genes that cannot diffuse

 4

themselves between neighboring cells. If the interactions of the morphogens were effected

primarily by chemical reactions and physical diffusion, Turing suggested that one could model

their pattern formation mathematically using physical and chemical laws. More specifically, one

could model morphogenesis with a particular class of partial differential equations called

reaction-diffusion equations. In 1991, Lewis Wolpert articulated a theory of positional

information in his book The Triumph of the Embryo[27] in which genes were influenced by

morphogen concentrations distributed in a gradient. In one example the location of each digit on

a chick’s wing was thought to be pinpointed by a corresponding concentration of the morphogen,

retinoic acid, which decreased as it diffused away from a source along the antero-posterior axis

of the wing (which is the axis determined by a pencil in one’s hand if it were held with a closed

fist).

Only recently with the work of researchers like Ouyang, Swinney, and Petrov [17],[19]

have experimental “Turing Patterns” been exhibited on actual biological chemicals in a

laboratory. The self-organizing patterns that biologists are seeing in their petri dishes and

gelatinous solutions have been organizing themselves for years on the computer screens of

mathematicians [9],[14],[15],[18]. From the time that Turing first showed that nonhomogeneous

solutions existed for reaction-diffusion systems modeling morphogenesis in a simple ring of

cells, there has been significant interest in the types of patterns that arise in the solutions of these

reaction-diffusion equations.

 Reaction-diffusion equations are partial differential equations (PDEs) which model the

way collections of particles behave taking into account two forces. First, they model the way

that the particles interact with one another at a given point in space, described in chemical terms

as their reactions. Second, they model the way that a given particle distributes itself in space,

 5

diffusing from regions of higher concentrations towards regions of lower concentrations.

Reaction-diffusion equations can model more than just morphogenesis, having been used in the

past to model population densities, host/parasite models [20], electrical reactions that occur

between nerve cells [8], and chemical waves such as those found in the Belousov-Zhabotinsky

reaction (ch. 7, [15]). Turing’s remarkable discovery was the fact that the presence of diffusion,

which acts in a region to distribute particles more homogeneously, given the right interactions

between particles being modeled, could help initiate very interesting, nonhomogeneous patterns.

Only today with advanced computer technology and mathematical methods are we

beginning appreciate the rich pattern formation capabilities of these models. As a general rule,

the variability of the initial and boundary conditions as well as the complex interaction between

concentrations over both space and time preclude a simple algorithmic solution to a reaction-

diffusion system. As with most partial differential equations used in modeling, exact solutions

are seldom discovered or even attempted. Therefore, to investigate our reaction-diffusion

system, which models two morphogens in two dimensions, we will turn towards approximate

solutions. Recent advancements in scientific computing and numerical analysis have increased

the availability of high-powered computing resources to researchers, rendering approximate

solutions of partial differential equations an efficient and reliable tool.

 The particular approximation method that we will use is called the Galerkin Spectral

method. Many approximation methods (the Finite Difference method for instance) break the

problem into smaller workable bits by dividing the spatial domain into pieces on a mesh and then

putting the individual puzzle pieces of the solution back together. Instead of breaking the

solutions down into puzzle pieces, spectral methods can be thought of as breaking the solution

into layers. We assume that the solution to the system can be written as a linear combination of a

 6

product of unknown functions in time with known basis functions over space. The Galerkin

method is a way to determine these unknown functions in time by eliminating spatial dependence

using inner products.

Galerkin methods reduce PDEs to a collection of Ordinary Differential Equations (ODEs)

in time. For an exact solution, we would need a system of infinitely many ODEs, but for our

purposes a finite approximation will be sufficient to capture the overall behavior of the system.

The primary advantage of the Galerkin method is that it is relatively easy to program and to

increase the number of “layers” in the approximate solution. As will become clear in the

subsequent sections, just as one is able to increase the accuracy of a Fourier series representation

of a solution by taking more terms in the Fourier basis, we are able to add more accuracy to our

approximate solution by taking more terms in the so-called Galerkin basis.

 The focus of this project is to create a body of programs in MATLAB that can solve a

system of nonlinear reaction-diffusion equations using the Galerkin method, and then use them

to analyze the pattern formation capabilities of a particular system in the context of

morphogenesis. In particular, we are looking for nonhomogeneous steady-state and periodic

solutions of the Gray-Scott model, a particular two species reaction-diffusion system in two

dimensions [18]. Along the way we use the method to test certain one-dimensional nonlinear

reaction-diffusion equations such as the Burgers equation and the Allen-Cahn equation [4].

 For the Gray-Scott model, we will also analyze the ODEs created by the lower degree

Galerkin method solutions, and find regions in parameter space near which particular

equilibrium points of the solution undergo Hopf bifurcation. We also use the principles of

spectral analysis to find conditions on the diffusion parameters that exhibit diffusion driven

7

instability. This analysis helps us to find parameter values for which the solution exhibits

periodic behavior and nonhomogeneous steady-state solutions.

Intrinsic to this study is an awareness of the complexity of these systems. In a

mathematical context, complex does not simply mean complicated. Rather, complexity

describes the phenomenon whereby complicated structures arise from the simple interactions of

interconnected individual particles. The structures that emerge from these interactions are not

virtually random like chaotic systems, but are intricately structured. However, the eventual

organization of a system will not immediately follow from the rules of interaction for the

particles, and could not possibly be extrapolated from an examination of a particular particle by

itself. One would use complexity to describe the way that the interaction of each individual ant

with its neighbors and the environment gives rise to a seemingly conscious colony, or how

individual water and air molecules acting according to physical and chemical principles can form

highly ordered weather structures like storm clouds and tornadoes. Our morphogenesis model is

yet another application of this concept. We propose that some of the complicated patterns

exhibited in living organisms with such a high level of reproducibility are controlled by the

simple interactions of morphogens in highly interconnected networks of individual cells. The

purpose of studying this type of complexity is to gain clues about the characteristics of an

aggregate structure from knowledge of the way individual particles interact, without resorting to

isolating the particle from its neighbors. We would like to know not only how an individual

particle affects the entire system, but also what characteristics of the entire system cause the

particles to organize themselves. First we will define reaction-diffusion equations and the

model.

 9

2. Reaction-Diffusion Equations

 A system of reaction-diffusion equations is a system of equations of the form

),,,(tD
t

xuufuu
∇+∆=

∂
∂ (2.1)

over a region , where u is a vector representing

the states (in our model morphogen concentrations) of a

group of substances at time t and position . A is a

matrix of diffusion coefficients, which in a two species

system is typically of the form , and ∆ is the

Laplacian differential operator acting on u with respect to

. It is the second order spatial rate of change of u. In the most general case, the inputs in

the reaction function f are u,∇ , the gradient of u with respect to x, x and t (p.5, [1]). These

partial differential equations are subject to boundary conditions over and initial

conditions. In these equations the term containing the Laplacian operator is the diffusion term.

Without the function f, (2.1) is the heat equation, one of the first equations encountered in any

partial differential equation course. The heat equation models the diffusion of heat from regions

of higher temperature, or heat concentration, to regions of lower temperature, which is very

similar to chemical diffusion. The function f is called the reaction function because it represents

the interactions between particles that act to increase or decrease the quantities of each species,

and may depend on the concentration of particles themselves (u), the gradient of the

concentrations with respect to space (∇), and the location of the reaction in space and time, (x

and t). The use of chemical terms is meant merely as an analogy, as reaction-diffusion equations

nD R⊆),(tx

=D

u

n

u

Rx ∈





v
0





0
µ

u

D∈x

D⊆Ω

D

Y
X

Ω

 Fig 2.1

 10

have found broad application in areas other than chemistry, such as neurological signal

transmission [2], Belousov-Zhabotinsky chemical waves (p159, [2]), geochemical systems

(p229, [2]), combustion theory (p114 [2]), and other complex systems. In particular, the

Burgers equation,

 , xxxt uuuu += ε

can be classified as a reaction-diffusion equation and is one of the most important equations in

the study of fluid dynamics. We will use it later to test our numerical methods.

This study is primarily concerned with functions f that depend only on the concentrations

of the reactants. This idealization is a good approximation for many chemical reactions held at

constant temperature, as is often true for biological reactions. The general system now reduces

to

).(ufuu
+∆=

∂
∂ D

t
 (2.2)

This system is augmented by initial conditions,

)()0,(xhxu = ,

and boundary conditions. We will be dealing with two morphogens, that is, the vector u will be

given by:









=

),(
),(

),(
tv
tu

t
x
x

xu
.

 Murray [11] gives a good overview of several reaction-diffusion equations used to model

morphogenesis. The three primary reactions he mentions are Schnakenberg’s reaction, Gierer

and Meinhardt’s activator/inhibitor model, and Thomas’ experimental model. Schnakenberg’s

 11

model is mathematically accessible, but has not found much biological application. It is given in

nondimensionalized form by

.)(

,)(
2

2

vuvvav
uduvbu

t

t

∆++−=

∆+−=

γ

γ
 (2.6)

Gierer and Meinhardt [10], [5] proposed the following model which is known as an

activator/inhibitor system.

.)(

,

2

2

vdvuv

u
v

ubvau

t

t

∆+−=

∆+







+−=

γ

γ
 (2.7)

The nondimensionalized parameters are the same as above. For this equation we will call u the

activator, since it acts to increase the population of both chemicals, and v will be the inhibitor,

since it decreases the rate of change over time for each morphogen. For patterns to occur, Gierer

and Meinhardt showed that d>>1, in other words, that the inhibitor must diffuse significantly

faster than the activator. As an illustration, consider a predator/prey system [14]. Think of the

prey as the activators and the predators as the inhibitors. The predators, cheetahs for instance,

‘diffuse’ faster than the prey, antelope. Where the antelope gather together they create an

environment where more of their kind can thrive, but the fast moving cheetahs inhibit their

numbers (through digestion) when they stray from the herd. Also contact between antelope and

cheetahs (again through digestion) activates the production of cheetahs. For the right

parameters, activator/inhibitor reaction-diffusion systems form dappled patterns where activators

clump together that can be thought of as analogous to herds of prey species.

12

The reaction-diffusion system that we will focus on is called the Gray-Scott Model. It

has been studied numerically by Pearson, who used a finite difference approach [18]. The

system is given by

,)(

),1(
2

2

vkFuvvdv
uFuvudu

vt

ut

+−+∆=

−+−∆=
 (2.8)

where k is the dimensionless rate constant, F is the dimensionless feed rate, and du and dv are the

diffusion coefficients. For our simulations they will typically be du=2 x 10-5 and dv=10-5 which

are the same values that Pearson used. Our goal is to understand the effect of the parameters F,

k, du and dv on the long term behavior of the solutions of the initial-boundary value problem

associated with (2.8). We would also like to understand the effects these parameters have on the

accuracy of our numerical approximation method. More concisely, we would like to know what

causes patterns to form in (2.8) and in reaction-diffusion equations in general.

 13

3. The Galerkin Spectral Method

Our method of numerically simulating reaction-diffusion equations is the Galerkin Spectral

method. Whereas many of the most common PDE approximation methods used today, including

the finite difference method, discretize the problem in space, the Galerkin and other spectral

methods discretize the problem over a spectrum of functions that are continuous over the whole

space. In that sense spectral methods are more global in nature. This spectrum of functions,

which is chosen according to the boundary conditions, forms an orthogonal basis for the function

space in which we seek the solution of the PDE. To implement spectral methods we construct an

approximate solution that is a linear combination of unknown time functions coupled with

known spatial basis functions that satisfy the boundary conditions associated with the PDE. The

procedure is analogous to using Fourier analysis to express any bounded continuous function as a

linear combination of sine and cosine functions at various frequencies.

 The concept of finding a set of basis functions with which we can represent all manner of

functions that satisfy the boundary conditions is central to spectral methods, and should be

explained further. In finite dimensional vector spaces, a basis is a linearly independent set of

vectors such that any vector in the vector space can be written as a linear combination of the

basis vectors. To illustrate, let V be a finite dimensional vector space over the field A and B=(β1,

β2,…, βm) be a basis in V. Then for each v in V there are constants , also called the

coordinates of v in the basis, such that

Aai ∈

 . (3.1) mmaaav βββ +++= ...2211

Since (3.1) is true for all vectors v in V then we say that B spans the vector space. For B to form

a basis of V, it must do more than just span the entire vector space. B must also be a be linearly

 14

independent set, meaning that no single basis vector in the set can be written in terms of the

others. In that sense, a basis is the smallest sized set that can span a vector space. We often

choose basis vectors in such a way that they are mutually orthogonal, that is if (a,b) represents

the inner product then

0),(=ji ββ when i ≠ j. (3.2)

Equation (3.2) will help us compute the coordinates ai from (3.1). Taking the inner product of

both sides of (3.1) with a fixed basis vector βi yields or),(),(iiii av βββ =

),(
),(

ii

i
i

va
ββ
β

= . (3.3)

 An important property of a set of basis vectors is that it helps define what is called a weak

characterization of the zero vector:

 0 if and only if (for all i. (3.4) ≡v 0), =iv β

We will see later that a similar characterization for infinite dimensional function spaces will

prove essential to the Galerkin Spectral method. For more on vector spaces and basis sets, see

Chapter 2 of [7].

Finite dimensional vector spaces differ from their infinite-dimensional counterparts in

one important respect. In finite dimensions, as long as the number of linearly independent

vectors in a set is equal to the dimension of the vector space, the set will span the entire space.

The fact the vectors in the set are linearly independent and span the vector space means that the

set is a basis for the vector space. In an infinite dimensional vector space, however, we cannot

be sure that a particular set is a basis even if it contains infinitely many linearly independent

vectors because we do not know whether or not the vectors span the space. The space in which

 15

the solutions to our partial differential equations lie, the set of bounded functions defined over

the domain Ω which satisfy the boundary conditions, is an infinite dimensional function space.

We must, therefore, be thorough when determining whether or not a proposed set of basis

functions spans a vector space.

Before we go any further, let us define orthogonality for our infinite dimensional function

space. Let f(x) and g(x) be real-valued functions in the space. Their inner product (f,g) is

defined as

∫
Ω

= dxxgxfgf)()(),(. (3.5)

When f and g are orthogonal this inner product is zero.

Let be an orthogonal set of basis functions from the function space G.

Since the functions in C are orthogonal, they automatically satisfy the linear independence

condition. In addition the set C must also be complete in G, that is, it must also be possible for

any function f in G to be expressed as a linear combination of this infinite set of basis functions.

More concisely, for each f in G,

,...},,{ 321 φφφ=C

)()(
1

xaxf i
i

iφ∑
∞

=

= (3.6)

for some constants {a1, a2, a3,…}.

Equality in (3.6) means:

0)()(lim
1

=−∑
=

∞→
xaxf i

M

i
iM
φ ,

where

∫
Ω

== dxxgggg 22)(),(.

 16

Let H be the set of all one-dimensional, square integrable, real-valued functions defined

on [0,1] that vanish at the endpoints:

 }0)1()0(,|]1,0[:{ ==∞<→= ffgRfH .

A well-known result from Fourier analysis states that the set

),...}sin(),...,2sin(),{sin(xnxxC πππ= (3.7)

forms a basis for H ([6] sec. 5.3.3). Just as we expressed any vector in a vector space in terms of

coordinates with respect to a set of basis vectors, given by (3.3), we can express any function in

H in terms of coordinates with respect to C. Using the orthogonality of sin(iπx) over the domain

[0,1], which means

(sin(iπx), sin(jπx))=0 if i ≠ j, (3.8)

we see that

))(),((
))(),((

xx
xxfa

ii

i
i φφ

φ
= . (3.9)

Notice that if we remove any of the functions in C with an even coefficent inside the sine

function to form a new set C*, we will still have infinitely many orthogonal functions that satisfy

the boundary conditions, but will no longer have a basis for H since not every function in H can

be written as a linear combination of the functions in C*. For example, consider removing

sin(2πx) from C to generate C*. If C* were a basis for H then we could write sin(2πx) in terms

of its coordinates. However, each of the ai are determined by (3.9):

,0
))sin(),(sin(
))sin(),2(sin(
==

xixi
xixai ππ

ππ

 17

where i can be every natural number except for 2. Since each of the coordinates is 0, then

sin(2πx) would have to be the 0 function, a contradiction. C* cannot, therefore, be a basis for H

even though it consists of infinitely many linearly independent functions in H.

The Galerkin Spectral method searches for solutions of the PDE system in terms of linear

combinations of the basis functions multiplied by unknown functions in time. The fact that the

domain on which we are looking for the solutions is bounded assures us that we will be able to

form a basis with countably many basis functions. The unknown functions in time are then

found by solving the now countably many ODEs that are created by substituting the template

solution into the PDE.

For the reaction-diffusion system given by (2.2)

)(ufuD
t
u

+∆=
∂
∂

 (3.10)

we define the differential operator

).()(ufuDuuL t −∆−= (3.11)

Note that (3.10) is equivalent to

L[u]=0. (3.12)

We search for solutions to (3.10) of the form:

)()(),(~
1

xtatxu i
i

i φ∑
∞

=

= , (3.13)

where the functions φi(x) satisfy the appropriate boundary conditions. To find the unknown ai(t),

we now substitute (3.13) into (3.12) and use the characterization of zero similar to (3.4):

0)(≡xg if and only if (for all i. (3.14) 0))(),(=xxg iφ

 18

This characterization is computationally useful because in order to show that a function is zero

for each value in its continuous domain, one must only show that the countably many (but

infinite) conditions in (3.14) are satisfied, namely that the inner product of each basis function

with g is zero. Setting in this sense, we are left with the countable conditions: () 0~ =uL

()
()
M

,0]~[,
,0]~[,

2

1

=
=

uL
uL

φ
φ

 (3.15)

The inner product operation in (3.15) removes spatial dependence and these conditions leave us

with a system of ODEs in terms of the unknown coefficients ai(t). In practice, instead of using

infinitely many basis functions in (3.13), we truncate the solution template at some finite number

N. Thus in (3.15) we would have N ODEs in N unkowns. To find the initial conditions needed

to solve (3.15), we use the initial conditions in the original PDE,

 u(x,0)=h(x) .

Since (3.13) must satisfy these initial conditions as well, we impose the following conditions on

the ai(t):

).()0,()0,(~)()0(
1

xhxuxuxa i
i

i ===∑
∞

=

φ

Thus the initial condition for each function ai(t), ai(0), is given by its coordinate for h(x) in terms

of the basis functions. By (3.9) we have an explicit formula;

))(),((
))(),((

)0(
xx
xxha

ii

i
i φφ

φ
= .

Now that we have N ODEs in N unknowns with initial conditions, we can solve for the

ai(t) and then use them to construct an approximate solution for the PDE. We can solve these

 19

ODEs numerically using any number of ODE solving packages found in mathematical software

such as MATLAB and Mathematica.

We will now illustrate the steps associated with the implementation of the Galerkin

method on the following basic reaction-diffusion equation in one space dimension:

)u , (3.16) (ufduxxt +=

where d is a constant real number. The spatial domain is D=[0,1]. The equation in (3.16) is

subjected to Dirichlet boundary conditions,

0),1(),0(== tutu , (3.17)

and initial conditions,

)()0,(xgxu = . (3.18)

Step 1. Choose the basis functions and solution template: The primary precondition for this

choice is that the basis functions satisfy the boundary conditions. If is our

basis then the solution template is of the form:

,...},,{ 321 φφφ=C

 (3.19)

 .)()(),(~
1
∑
=

=
N

n
nn xtaxtu φ

For the boundary conditions in this example we will choose

) , (3.20) sin()(xnxn πφ =

 20

where n is an integer since (3.20) is zero when x=1 and x=0. Other considerations for this choice

have to do with the type of solution that one expects, the information about the solution that we

are trying to extract, and of course the level of complexity that our numerical simulator is

prepared to handle. Certain basis functions may be more natural for the solution; a continuous

solution would probably be better represented in a continuous basis set of functions. The

individual modes of the basis functions may have physical interpretations for the model, and we

can choose a basis set that takes advantage of these interpretations to reveal certain properties

about the model. Later, when we look at the Gray-Scott model, the 0 mode solution will

represent the system without diffusion, and we can ‘add’ diffusion to our approximations by

taking the solution with more modes. Table (3.1) gives examples of Fourier basis functions one

can use for the boundary conditions listed in the left column.

Table 3.1

Type of Boundary Conditions Fourier basis to use

Periodic einπx

Dirichlet: u(0,t)=0, u(1,t)=0 sin(nπx)

Neumann: ux(0,t)=0, ux(1,t)=0 cos(nπx)

Mixed: ux(0,t)=0, u(1,t)=0






 +

2
)21(cos xn π

 21

There are a variety of basis functions that will work with a given set of boundary conditions. If

we did not want to use Fourier basis functions for one reason or another, we could look for

Chebyshev and Legendre polynomial bases as well as wavelets.

Step 2. Substitute template into differential operator and obtain a set of ODEs in time:

Our differential operator will be

)()(ufduuuL xxt −−= . (3.21)

Substituting from (3.19) into (3.21) we have:

 (3.22)

hat th on deriv ive ha been replaced in (3.22) with the constant -n2π2 because

() 22 . In order to obtain the an(t), we set (3.22) equal to zero using

the weak formulation described in (3.14) and (3.15):

Notice that the inner product operation and the summation operations commute because

integration is a linear operation. The functions are orthogonal on the interval

,1] and when m=n, (sin(mπx), sin(nπx))=1/2 so (3.23) now takes the form:

u~

Notice t e sec d at s

 nnn
.)sin()()sin()()sin()()~(

11

22

1






−





+′= ∑∑∑
===

N

n

N

n

N

n xntafxntandxntauL ππππ

)sin()sin(xnnxn xx πππ −=

())sin()(),sin()sin(),sin()(2 xntafxmxnxmntad nn = − ∑∑ ππππ()

{ })23.3(.,...,2,1

0)sin(),sin()(
11

2

1

Nm

xnxmta
N

n

N

n

N

n
n

=
















+′∑

===

πππ

[0

)sin()(xnxn πφ =

















−

−
=

′
∑
=

)()(,)()(
22

)(
1

22

xtafxtadmta
n

N

n
nmm

m φφπ (3.24)

22

()
() ())(),sin(2

)sin(),sin(
)(),sin()0(xgxm
xmxm

xgxmam π
ππ

π
==

Step 3. Find the Initial conditions for the ODEs: In order to find a unique solution to a system

 in the system. For

the initial conditions, we use (3.9) to get

(3.25)

for m=1,...,N.

linear, then the system of ODEs will be nonlinear, and

ate solution using a numerical ODE

a’s NDSolve. The main computational costs

he last term in (3.24) which is the nonlinear term. We use forward time stepping

methods primarily, such as the Runge-Kutta methods built into the MATLAB and Mathematica

ODE solvers. Many reaction-diffusion equations have a property called stiffness that causes

forward time stepping methods to become unstable unless the time step is made extremely small.

MATLAB and Mathematica use highly adaptive routines that can usually avoid this problem;

however, the computational cost of solving stiff differential equations could become prohibitive

even for adaptive solvers.

Step 5. Reconstruct the solution: Once we have computed all the coordinate functions an(t),

we can reconstruct the approximate solution using (3.19). Since we solved the ODEs

computationally, our an(t) will not be continuous functions but rather discretized tables of an(t)

values given at time intervals specified by our numerical ODE solving scheme. Errors in our

for m=1,...,N.

of ordinary differential equations, we need initial conditions for each function

Step 4. Solve the initial value problem for time: Now we have N ODEs in N unknowns with

initial conditions. If the function f is non

we will be forced in most cases to look for an approxim

solver such as MATLAB’s ODE45 or Mathematic

will arise from t

 23

final approximate solution will arise at several points during the process. First and foremost,

they will be due to choosing N too small. The magnitude of N that one must use to bound the

imating

uniqueness theory

Example 1: One-dimensional heat equation

s

e

 (3.26)

which can be expressed in operator notation as:

error at a given value for any particular reaction-diffusion equation is a difficult problem in

analysis that will not be addressed here. Errors will also arise from numerically approx

solutions to the ODEs. When comparing the approximate solution to actual reaction-diffusion

systems found in nature, we must also take into account errors that arise from approximations

and simplifications that were made when creating the mathematical model.

 The tacit assumption made throughout this study is that our initial-boundary value

problem has a unique solution. This assumption can be made rigorous in the setting of some of

our problems (for example, the nonlinear Allen-Cahn equation) but remains a formidable open

problem in mathematical analysis for others including the Burgers equation and the Gray-Scott

model. Indeed the complex structure of the periodic and steady-state numerical solutions we

obtain is an indication of how difficult it will be to develop an existence and

for nonlinear PDEs.

The simplest reaction-diffusion equation is one that does not contain any reaction at all. Thi

equation is commonly referred to as the heat equation since it has been used extensively to model

the way heat spreads in various media over time. It is given in one dimension by (3.16) wher

f(u)=0:

xxt kuu = ,),0(Lx∈

 24

0)(=−= xxt kuuuL (3.27)

u

with initial conditions

(x,0)=g(x). (3.28)

In (3.26) k represents the thermal diff ere Dirichlet boundary

conditions

 (3.29)

and follow the step by step process outlined above.

Step 1- Choose the basis functions and solution template: Since we have Dirichlet boundary

conditions, we choose

usivity constant. We consider h

0),(),0(== tLutu

27) we have

)sin(xnπφ = . Our solution template is:

Step 2- Substitute template into differential operator and obtain a set of ODEs in time:

Substituting (3.30) into (3.

Ln

Using the weak characterization of 0 given in (3.14) and (3.15

 (3.30) .)sin()(),(~ ∑=
N

xntaxtu π
1=n

n L

.0)sin()()sin()(
11

=














+′ ∑∑
== n

n
n

n x
L

ta
L

kx
L

ta
2 NN nnn πππ

), this expression gives us the N

conditions:

0)sin(),sin()()sin(),sin()(















 LLLLL nn

1

2

1

=+′ ∑∑
==

xnxmntakxnxmta
N

n

N

n

πππππ . (3.31)

 25

Using the fact that:




≠
=

=

















nm
nmL

x
L

nx
L

m
0

2/
sin,sin ππ

 

(3.31) is red

 (3.32)

uced to

)()(
2

ta
L

mkta mm 





−=′ π m=1,…,N (3.33)

since the constant 2
L

The am(0) are nothing more than the Fourier sine c

 factors out of either side.

Step 3- Find the Initial conditions of the ODEs: Using (3.9) and the orthogonality of our basis

set, we have:

dxxgx
L

m
Lx

L
mx

L
m

xgx
L

m

a
L

m)()sin(2

)sin(),

)(),sin(
)0(

0
∫=













=
π

ππ

π

sin(


. (3.34)

oefficients of g(x).

Each of the ODEs in (3.33) has the solution

Step 4- Solve the initial value problem for time:

() tL
mk

mm eata
2

)0()(
π−=

which can be verified by direct substitution.

Step 5- Reconstruct the solution: Using our solution template, (3.30), we have

 26

,)sin()0(),(
1
∑
=

=
n

n x
L

eaxtu

()~
2

−
N

tL
nk nππ

where an(0) is the nth Fourier sine coefficient of the initial condition. This is indeed the N-th

partial sum of the true solution of the heat equation with Dirichlet boundary conditions which

can be derived by more traditional methods such as separation of variables.

Example 2: The Burgers equation - A one-dimensional nonlinear reaction-diffusion equation

We will now demonstrate how the implementation changes when a nonlinear reaction is added to

the problem. A common nonlinear reaction-diffusion equation used in the modeling of

turbulence and airflow is the Burgers equation,

main as the heat equatio

0)(=+−= xxxt uuuuuL ε . (3.35)

In the Burgers equation the quantity u is related to the density of the fluid being modeled and the

,

418-427) that when ε = 0 that the typical initial disturbances in u form discontinuities known as

shock waves and yet when ε>0 solutions that start out smooth remain smooth for all time. The

computational challenge in this problem is to gain insight into the Galerkin method’s response

for small but positive viscosities. We will analyze (3.35) over the interval [0,1] subject to

Dirichlet boundary conditions on the same do n above (3.29) with L=1.

The initial condition we consider is:

(3.36)

term xxuε represents viscous dissipation in the model. It is known (see Malek-Madani [13]


==

.0
)()0,(

otherwise
xgxu

 ∈−]2/1,4/1[)8cos(1 xxπ

 27

Just as before, the boundary conditions lead us to choose the basis)sin(xjj πφ = . Proceeding

through the Galerkin method using steps 1-5 and the relationship (3.32), we arrive at the

equations:





−′ NN

mm
mta 22

22
)(επ




 ′−= ∑∑
== j

jjn
n

n
m xtaxtaxta

11
)()()()(),()(φφφ

We can simplify the nonlinear term for ease of programming:

where a is a 1xN row vector whose entries are the ai, i=1,..,N, and P is the matrix defined by

() ')()(),()()()()()()(),(
1 111

aaPxxxtataxtaxtax m

N

n

N

j
jnmjn

N

j
jjn

N

n
nm =′′=








′′ ∑∑∑∑

= ===

φφφφφφ

())()(),(),(xxxjiP jimm φφφ ′=

It is easy to show that







≠−≠+

=+−

).()(,0

,,4

imjandimj

i

imji

π

π


 =−= ,,4),(imjjiPm

Therefore, the Galerkin method reduces to N differential equations in N unknowns of the form

The initial conditions for the above system are given by (3.9) as

)'(2)()(22 aaPtamta mmm −−=′ επ .

(sin()
() .)8cos(1)(sin(2

)sin(),sin(
)(),)0(

2/1

4/1

dxxxm
xmxm

xgxmam ∫ −== ππ
ππ

π

One of the main questions we have regarding the Galerkin Spectral method has to do with the

magnitude of N that we must pick to accurately describe the system. This choice will depend on

 many parameters, the most important being the amount of information we need to extract from

 28

our approximation. Figure 3.2 shows Galerkin approximations to the Burgers equation for 8, 32

sed, the approximate solution

becomes smoother and displays less oscillations due to the basis functions.

and 64 basis functions at time 1. We see that as N is increa

Figure 3.2 Galerkin approximation to the Burgers equation for various N, ε=.001, t=1.

Figures 3.3-3.5 show Galerkin Spectral method approximations to the Burgers equation for

various N and ε values. In these diagrams, each curve represents our approximate solution at

time intervals of 0.05 units with a final time of 1 unit. With N=32 and ε=0.01, the solution

seems to qualitatively follow the behavior that we would expect from the Burgers equation (Fig

3.3). There are only slight oscillations near the base of the cosine function in the initial condition

for the first time value due to the inability of our smooth basis functions to accurately

proximate the sharp corners of the non-smooth initial condition. In Figure 3.4 where we

decrease ε to 0.001, and keep N at 32, the Galerkin method shows much more oscillations and

ap

29

Figure 3.4 Burgers’ equation n=32, ε=.001

Figure 3.3 The Burgers equation n=32, ε=.01

inaccuraci

However, when we increase N to 96, we see that

the solution begins to behave more smoothly

despite some lingering instabilities. When ε is

increased, the solution at time one has a sharper

corner and the peak of the solution seems to

decrease at a slower rate. This is because ε is

inversely proportional to the Reynold’s number.

An ε value of zero would model a fluid with no

viscosity (inviscid flow), and a shock wave would

form. With a positive ε value, the shock dissipates.

Notice also that the oscillations, which are caused

by the inability of our basis functions to adapt to

non-smooth shock wave behavior begins to form

for smaller ε values decreases with time as a result

of the diffusion term. As ε is decreased, the effect

of the diffusion term is decreased, so we expect

oscillations to occur earlier and last longer. This

evidence clearly indicates that our choice of N

depends on the parameter ε in the equation.

es than it did with ε = 0.01 in Fig 3.3.

Figure 3.5 Burgers’ equation n=96, ε=.001

 30

Example 3: The Allen-Cahn Equation

This next example illustrates the use of nonhomogeneous boundary conditions as well as

the difficulty of knowing when one has reached a steady-state solution for some reaction-

diffusion systems. The Allen-Cahn Equation is given by

 (3.37)

Referring to (3.10) we have f(u)=u(1-u2). Just as Trefethen does in [23], we will consider the

nonhomogeneous Dirichlet boundary conditions:

 1),1(,1),1(=−=− tutu , (3.38)

and the initial condition

)
2
3sin(47.053.0)()0,(xxxgxu π−+== . (3.39)

Note that the initial condition satisfies the boundary conditions. Additionally, g(x) is asymmetric

about the origin.

Step 1- Choose the basis functions and solution template:

With nonhomogeneous Dirichlet boundary conditions, we choose the solution template in the

following form:

 (3.40)

Adding the term x to the solution template ensures that it satisfies the boundary conditions

(3.38). This choice is by no means unique, so we have added x, the first function that came to

mind that satisfied the conditions. The basis functions will still be but notice

that the solution template is not made up entirely of linear combinations of the basis functions.

Step 2- Substitute the template into the differential operator and obtain a set of ODEs in time:

Performing the procedures used in (3.22) and (3.23) we are left with ODEs of the form:

.0)1()(2 =−−−= uuuuuL xxt ε

.)sin()(),(~
1
∑
=

+=
N

n
n xntaxxtu π

)sin()(xnxn πφ =

 31

() () 0)()(),()(),()()(),()(
11

22

1
=
















+++′ ∑∑∑

===

N

n
nnmnm

N

n
nnm

N

n
n xtaxfxxxntadxxta φφφφπφφ

m=1,…,N. (3.41)

Since the basis functions are orthogonal, (3.41) reduces to:

. (3.42)

The last term in (3.42) is the most complicated term and will be the most costly to evaluate

numerically since f is a nonlinear function.

Step 3- Find the Initial conditions of the ODEs: Paralleling the procedure we used to get (3.9),

we must now take into consideration the function x that we added to satisfy the boundary

conditions. We start with the initial condition,

and take the inner product with each basis function:

Since the basis functions are orthonormal, meaning that they are orthogonal and for

all n, our initial conditions are:

. (3.43)

Steps 4 and 5 - Solve the initial value problem and reconstruct the solution

Now as above, we can solve the initial value problem (3.42)-(3.43) in MATLAB (see appendix).

Figures 3.6 and 3.7 show the approximate solution using the Galerkin method with 8 basis

functions. These figures exhibit an important phenomenon known as bistability found in some

















++−=′ ∑

=

N

n
nnmmm xtaxfxtadmta

1

22)()(),()()(φφπ

,)sin()0()()0,(
1
∑
=

+==
N

n
n xnaxxgxu π

() ().)(),sin()sin(),sin()0(
1

xxgxmxnxma
N

n
n −=∑

=

πππ

1),(=nn φφ

()])([),sin()0(xxgxmam −= π

 32

reaction-diffusion systems. Notice in Figure 3.7 that before time 45, the solution seems to have

settled into a nonhomogeneous, wave-like steady-state solution, but suddenly snaps into its final

nonhomogeneous steady-state solution where u transitions once from –1 to 1. This property of

reaction-diffusion equations makes it difficult to say using only computational evidence when a

solution has reached its steady state and when it is merely lingering in some intermediate state.

Figure 3.6 Allen-Cahn Equation Figure 3.7 Allen-Cahn Equation

Example 4: The heat equation in two dimensions

A few changes are required to reformulate our problem for two dimensions. We consider the

heat equation in two dimensions with the heat diffusivity constant, k in (3.27) equal to one:

 (3.44)

with initial conditions:

u(x,y,0)=g(x,y) (3.45)

and periodic boundary conditions. The solution template takes the form:

. (3.46)

0)),,((=∆−= uutyxuL t
+∈−×−=Ω∈ Rtyx],1,1[]1,1[),(

),()(),,(~ yxtatyxu mn
m n

mn φ∑ ∑
∞

−∞=

∞

−∞=

=

 33

As in one dimension, the basis functions φmn(x,y) are determined by the boundary conditions. To

satisfy periodic boundary conditions we choose:

. (3.47)

Notice that

)

and

. (3.48)

In other words, is an eigenfunction of the Laplacian operator with eigenvalues -(m2 + n2)π2.

Substituting (3.46) into (3.44) and using (3.48), we have:

. (3.49)

We now take the inner product of (3.49) over Ω with . In two dimensions, where complex

valued functions are allowed, the inner product is defined by

)(),(ynxmi
mn eyx ππφ +=

()()cos()sin()cos()sin(),(ynynixmxmiyxmn ππππφ ++=

=∆),(yxmnφ =−− ++)(22)(22 ynxmiynxmi enem ππππ ππ),()(2222 yxnm mnφππ +−

mnφ

),()()(),()()~(222 yxnmtayxtauL mn
m n

mnmn
m n

mn φπφ ∑ ∑∑ ∑
∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

++′=

mnφ

∫∫
Ω

= dAyxgyxfyxgyxf),(),()),(),,((,

where),(yxg represents the complex conjugate of the function g(x,y). Approximating the

infinite sums with finite sums between –N and N, we will be left with (2N+1)2 ordinary

differential equations in t of the form:

 34









−−=







 ′ ∑ ∑∑ ∑
−= −=−= −=

),(),,()()(),(),,()(222 yxyxnmtayxyxta pqmn

N

Nm

N

Nn
mnpqmn

N

Nm

N

Nn
mn φφπφφ

or equivalently:

.

 (3.50)

We see that the inner product,

() ()),(),,()()(),(),,()(222 yxyxnmtayxyxta pqmn

N

Nm

N

Nn
mnpqmn

N

Nm

N

Nn
mn φφπφφ ∑ ∑∑ ∑

−= −=−= −=

−−=′

()),(),,(yxyx pqmn φφ ,

is a known quantity for any given p,q,m, and n and thus we have a system of (2N+1)2 ODEs in

(2N+1)2
 unknowns (the amn(t)). For our region Ω, the following relationship holds:

()




≠≠
==

== ∫ ∫
− −

++

).()(,0
),()(,4

),(),,(
1

1

1

1

)()(

qnorpm
qnandpm

dxdyeeyxyx yqxpiynxmi
pqmn

ππππφφ (3.51)

Using (3.51) we can rewrite (3.50) as

, (3.52)

. To find the initial conditions with orthogonal basis functions we use the

same process as in the one-dimensional case. Evaluating (3.46) at t=0, and equating the initial

condition of the solution template to that of the true solution given by (3.45), we have:

)()()(222 nmtata mnmn −−=′ π

},...,{, NNnm −∈

 35

),()0,,()0,,(~),()0(yxgyxuyxuyxa mn
m n

mn ===∑ ∑
∞

−∞=

∞

−∞=

φ . (3.53)

We take the inner product of (3.53) with each basis function, and for each φij every one of the

apq(0) disappears except aij(0), resulting in

)),(),,((
4
1)0(yxyxga ijij φ= . (3.54)

With a system of ODEs and initial conditions, we again have an initial value problem for which

we can obtain a numerical solution. This system is much larger than the one our scheme

produced for the one-dimensional equations, and increasing the number of basis functions will

take significantly more computer time and memory. Even for the reactionless heat equation it

takes a few minutes to produce an 8 basis approximation for a solution at time 100. On the other

hand, the system of ODEs (3.52) with initial conditions (3.54) could be solved analytically

because (3.52) is an uncoupled system. Once we add our nonlinear reaction terms, it will

become impossible to uncouple the ODEs produced by the Galerkin method, and we will

normally be required to use numerical methods to solve the system.

Example 5: The Gray-Scott Model\

This system mentioned in (2.8) will be the focus of our search for patterns. It is a variant of the

autocatalytic Selkov model of glycolysis, due to Gray and Scott([5],[21]).

 (3.55)
vkFuvvdv

uFuvudu

vt

ut

)(

)1(
2

2

+−+∆=

−+−∆=

 36

In the model, u and v represent the concentrations of chemicals U and V, in standard chemistry

notation u=[U] and v=[V]. The rate of change of the concentrations with respect to time is

determined both by diffusion, modeled by the Laplacian of the concentrations with respect to

space, and the chemical reaction rates which depend on the concentrations of the other chemicals

at any point. The diffusion coefficients, given by du and dv, are multiplied by the diffusion terms

for each concentration. The reactions involved in the Gray-Scott model can be simplified to the

following reactions:

 (3.56)

 . (3.57)

Both reactions proceed in only one direction. Reaction (3.56) proceeds at a rate proportional to

[U][V]2=uv2 and acts to decrease the concentration of chemical U and increase the concentration

of chemical V. Reaction (3.57) converts V to the inert product P at a rate of k[V]. F is a non-

dimensionalized feed rate. We have four parameters for this system, F and k, the reaction

parameters, and du and dv, the diffusion coefficients.

In 1993, John Pearson from Los Alamos National Laboratories published results from

finite difference simulations of the Gray-Scott model [18]. He used a mesh of 256 by 256 grid

points and simulated solutions for 200,000 time steps. With the powerful supercomputers at Los

Alamos National Laboratories, he was able to produce some very interesting patterns, from

oscillating labyrinthine stripes, to stable hexagonal patterns of points, to dividing chemical rings

resembling dividing cells. We have found some evidence of these remarkable patterns using the

Galerkin method on much smaller computers for much smaller amounts of time.

VVU 32 →+

PV →

 37

As in Pearson’s simulations we start with diffusion coefficients of du=2 x 10-5 and

dv=10-5, but unlike his 1993 paper, we show patterns that occur with different diffusion

coefficients as well. Our simulations take place on the region Ω=[-1,1]x[-1,1] with periodic

boundary conditions. We choose the initial condition as a small perturbation from the

homogeneous equilibrium point (u0,v0)=(1,0). Unlike Pearson’s step function perturbations, our

perturbations will be smooth. Explicitly, the perturbations will be Gaussian spots (a depression

from 1 for u and a raised impression with a base at 0 for v). The following is an example of an

initial condition with a maximum perturbation magnitude of 1/16 and centered at (x,y)=(h,k) for

both chemical u and chemical v:

.
16
10)0,,(

,
16
11)0,,(

))()((20

))()((20

22

22

kyhx

kyhx

eyxv

eyxu

−++−

−+−−

+=

−=
 (3.58)

A homogeneous equilibrium point is a point at which the concentrations are equal throughout the

domain and are not changing with time. Later we explain how we know (1,0) is a homogeneous

equilibrium point and we show that it is linearly stable for all reaction and diffusion parameter

values. For now it suffices to know that at a stable equilibrium point the concentrations of all the

chemicals in the system will remain constant over the entire domain, and will return to that

constant state when slightly perturbed until some outside force acts to push the concentrations far

enough away from their equilibrium values.

The purpose of using initial conditions that are small perturbations from homogeneous

equilibrium points is to mimic the embryo’s transition from a stable, patternless, homogenous

 38

state to a state where stable, nonhomogeneous patterns exist. One of the great breakthroughs of

Turing’s work in morphogenesis was that he showed examples of homogeneous steady-state

solutions that appear stable when only the chemical reactions are modeled, but become unstable

when diffusion is considered. The system could then move to another steady-state solution,

which may be nonhomogeneous [25]. Thus a chemical system initially in a state of

homogeneous equilibrium could take on a variety of patterns, dependant on the reaction and

diffusion parameters, as a small perturbation of the initial homogeneous state propagates

throughout the domain. Murray explains this phenomenon of diffusion driven (or Turing)

instability found in reaction-diffusion equations more thoroughly in chapter 14 of his text

Mathematical Biology [15].

Our solution template is, as in the heat equation:

 is given by (3.47). We will demonstrate the Galerkin procedure for the first

equaition in (3.55). The procedure is identical for the second equation. Substituting (3.59) into

the linear operator defined by the first equation in (3.55) we have

),()(),,(~ yxtatyxu mn
m n

mn φ∑ ∑
∞

−∞=

∞

−∞=

=

),()(),,(~ yxtbtyxv mn
m n

mn φ∑ ∑
∞

−∞=

∞

−∞=

=

+∈−×−=Ω∈ Rtyx],1,1[]1,1[),(

, (3.59)

where),(yxmnφ

.0),()(1),()(),()(

),()()(),()()~(

2

1 1

222

=







−−








+

++′=

∑ ∑∑ ∑∑ ∑

∑ ∑∑ ∑
∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

yxtaFyxtbyxta

yxnmtadyxtauL

mn
m n

mnmn
m n

mnmn
m n

mn

mn
m n

mnumn
m n

mn

φφφ

φπφ

 39

Using the weak characterization of 0 by setting the inner product with each basis function φpq

equal to zero, we are left with equations of the form:

 (3.60)

The most complicated part of this expression contains the nonlinear terms that come from

substituting the template solution into uv2. Simplifying this expression, as we did with the heat

equation, we have:

Note the inner product inside the nonlinear term simplifies to:

=+++=+++),0321()0321(,4 qnnnandpmmm

)),(),,(()()),(,(

),(,),()(),()(

)),(),,()(()(

)),(),,(()(

2

11
1 1

11

222

yxyxtaFyxF

yxyxtbyxta

yxyxnmtad

yxyxta

pqmn
m n

mnpq

pqnm
m n

nmmn
m n

mn

pqmn
m n

mnu

pqmn
m n

mn

φφφ

φφφ

φφπ

φφ

∑ ∑

∑ ∑∑ ∑

∑ ∑

∑ ∑

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

−

+



















−+−

=′

)).,(),,(),(),((

),(,),()(),()())),(,(

332211
1 1 2 2 3 3

332211

2
2

yxyxyxyxbba

yxyxtbyxtayxuv

pqnmnmnm
m n m n m n

nmnmnm

pqmn
m n

mnmn
m n

mnpq

φφφφ

φφφφ

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑∑ ∑
∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

=

















=





≠+++≠+++
=

).0321()0321(,0
)),(),,(),(),((332211 qnnnorpmmm

yxyxyxyx pqnmnmnm φφφφ

(3.61)

 40

If we truncate the infinite sums keeping only N terms, we will be left with (2N+1)2 equations in

(2N+1)2 unknowns. Denoting the sum
N N N N N N

by
N

we can write

(3.60) in terms of ODEs of the form:

 (3.62)

Using similar reasoning, we can write the second equation in (3.55) as:

 (3.63)

In this form (3.62) and (3.63), given appropriate initial data, can be solved numerically on a

computer package such as MATLAB. This is made easier by using (3.61) which relies on the

orthogonality of the basis functions to calculate the large inner product. We can also calculate

the inner products ahead of time and store them to be referenced for particular index values.

Since the time derivative is alone on the left side, we can use MATLAB’s built in ODE solvers

to calculate the values at a given time. See the appendix for the programs used in calculating the

results.

∑ ∑ ∑ ∑ ∑ ∑
−= −= −= −= −= −=Nm Nn Nm Nn Nm Nn1 1 2 2 3 3

∑
NM)(

,

)),(,(

)),(),,(),(),((

)),(),,(]()([)(

)),(),,(()(

332211
)(

332211

222

yxF

yxyxyxyxbba

yxyxFnmdta

yxyxta

pq

pqnmnmnm
NM

nmnmnm

pqmn
m

u
n

mn

pqmn
m n

mn

φ

φφφφ

φφπ

φφ

+

−−−−

=′

∑

∑ ∑

∑ ∑
∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

)).,(),,(),(),((

)),(),,(]()([)(

)),(),,(()(

332211
)(

332211

222

yxyxyxyxbba

yxyxkFnmdta

yxyxtb

pqnmnmnm
NM

nmnmnm

pqmn

N

Nm
u

N

Nn
mn

pqmn

N

Nm

N

Nn
mn

φφφφ

φφπ

φφ

∑

∑ ∑

∑ ∑

+−−−−

=′

−= −=

−= −=

 41
4. The Gray-Scott Model

The Galerkin Spectral method and our MATLAB programs provide us with a way to produce

numerical solutions of the Gray-Scott model for given parameter values. We will now analyze

the model to determine where in parameter space we might begin looking for patterns. The first

step is to examine its homogeneous equilibria. Recall that the Gray-Scott model is given by:

vkFuvvdv

uFuvudu

vt

ut

)(

)1(
2

2

+−+∆=

−+−∆=
 (4.1)

In the homogeneous state the concentrations do not change with respect to space and there will

be no diffusion. In other words, the Laplacian terms that represent diffusion go to 0. The

resulting equations are:

vkFuvvugv
uFuvvufu

)(),(
)1(),(

2

2

+−==′

−+−==′
 (4.2)

It is interesting to note that for periodic or Neumann boundary conditions, (4.2) also results when

considering only the 0th order Galerkin approximation of (4.1).

Theorem 4.1: When using periodic or Nuemann boundary conditions, the diffusionless

equations describing the reaction kinetics in (4.2) are equivalent to the ODE’s that result from

the Galerkin method when choosing N=0.

Proof: When as for periodic boundary conditions, or else when

as for Neumann boundary conditions, . The

solution template (3.46) with N=0 now takes the form:

)(
,),(nymxi
nm eyx += πφ

)cos() nymx πcos(),(, yxnm πφ = 1),(0,0 =yxφ

() ()




=== ∑∑
= =).(

)(
,),()(),,(~

0,0

0,0
0,00,0

0

1
,

0

1
, tb

ta
yxtyxttyx

m
nm

n
nm φφ aau (4.3)

 Now when we substitute the right side of (4.3) into (4.1), we have

.)()(

)1()1(

0,0
2

0,00,00,0
2

0,00,00,00,0

0,0
2

0,00,00,0
2

0,00,00,00,0

bkFbabkFbabdb

aFbaaFbaada

v

u

+−=+−+∆=′

−+−=−+−∆=′
 (4.4)

Since the coordinate functions and b depend only on time, the diffusion terms in (4.3)

that contain the Laplacian, a spatial differential operator, go to 0. Removing the subscripts we

see that (4.4) is equivalent to (4.2):

0,0a 0,0

 42

.)(
)1(

2

2

bkFabb
aFaba

+−=′

−+−=′
 (4.5)

Thus (4.5), the system of equations that arises for the N=0 case, is equivalent to (4.2).

Q.E.D.

The fact that the equilibrium points we are looking for are to be homogeneous allowed us to

remove the diffusion term. The fact that they are equilibrium points means that they will not

change over time, and thus the left side of (4.5) will be 0. In order to find these homogeneous

equilibrium points we must now solve the nonlinear system:

.0)(
0)1(

2

2

=+−

=−+−

bkFab
aFab

 (4.6)

Solving for a in the first equation and substituting into the second equation in (4.6), we see that

0))((22 =++−+ FkFbFkFbb , (4.7)

thus either b= 0, in which case a=1, or else b will be the root of the polynomial

. We will show later that the equilibrium point, (aFkFbFkFb ++−+ 22)(0,b0)=(1,0) will

always be stable, even when diffusion is added. The b coordinates of the other equilibrium

points are, by the quadratic formula,

b=
)(2

))((4 22

kF
FkFkFFF

+
++−±

 (4.8)
Figure 4.1: This curve gives the values of F and k

where exactly 2 equilibria exist. Inside the region

bounded by the curve and the y axis, there are 3

equilibria and outside the only equilibrium point is
and using the second equation in (4.6)

a=(F+k)/b. (4.9)

We will name the equilibrium point

(1,0)=(a0,b0). The equilibrium point with

)(2
))((4 22

kF
FkFkFFF

b
+

++−−
= , we will

call (a1,b1), and the point with

)(2
))((4 22

kF
FkFkFFF

b
+

++−+
= will be

(a2,b2). The coordinate b1 will always be

 43
less than the coordinate b2 and a1 will always be greater than a2. We will call (a0,b0)=(1,0) the

independent equilibrium point and the other two dependent equilibrium points since they depend

on F and k. The dependent equilibrium points will only exist when FFk −≤ 2 . In that

region of F-k space, (4.2) has three equilibrium points (See fig 4.1). Elsewhere, (a0,b0) is the

only equilibrium point. This is illustrated in Figure 4.1, which is also reproduced in [18]. Using

calculus we can find the maximum k value where there will be exactly 2 equilibrium points:

 FFk −=
2

1
4

1
−=

FdF
dk .

The critical point is at F=k=1/16=0.0625 as it

appears to be in Figure 4.1. The maximum value

of F for which the dependant equilibrium points

can exist (see Figure 4.1) occurs at the larger

value for which exactly two equilibrium points

exist when k is equal to 0. The values of F for

which there are exactly two equilibrium points

with k=0 are given by
2
FF = . Solving for F we have F=0 and F=1/4 as indicated in Figure

4.1. Thus, region of F-k space on which the dependent homogeneous equilibrium points exist is

bounded by

Figure 4.2 Field plot and equilibrium points
of the ODE system (4.2) for F=0.03, k=0.04.

.16/10
4/10

≤≤
≤≤

k
F (4.10)

Figure 4.2 shows the equilibrium points and the vector field plot of the differential

equation in the ab plane for F=0.03 and k=0.04. At these particular parameter values, there are

three equilibrium points. Figures 4.3 and 4.4 show the dependence of the equilibrium points

given by (4.8) and (4.9) on F and k as these parameters are respectively held constant. In figure

4.3, the equilibrium points approach each other from either side as k is increased. In Figure 4.4,

the equilibrium points appear, traverse around an enclosed path, and vanish as F increases from
2)16/14/1(k−− to 2)16/14/1 k−+(.

 44
The surface and the contour plot in Figure 4.5 show how the equilibrium points change

with both F and k. Analyzing Figure 4.5 we can visualize several properties of the system:

.
Figure 4.3: Equilibrium points as k varies and F is
held constant.

Figure 4.4: Equilibrium points as F is varied and
k is held constant

Theorem 4.2: When there are exactly two equilibrium points, a=1/2.

Figure 4.5: Visualizing the dependence of the equilibrium points on F and k.

Proof: When there are exactly two equilibrium points, the term under the radical in (4.8) is zero.

This is true when FFk −=
2

. Thus we see that the equilibrium point’s a coordinate is at:

 45

.2/1)4/(2)2(2)(2

)(2

)(
22

==
−+

=
+

=









+

+
=

+
=

F
F

F

FFF

F
kF

kF
F

kF
b

kFa

Q.E.D.

Theorem 4.3: . 1)(lim
0

=+
→

ba
k

Proof: As we see from (4.8) that 0→k F
F

FFFF
b −±=

−±
→ 4/12/1

2
)(4 22

 and from

(4.9) that b
F→a . Thus

,lim1)4/12/1(1

)4/1(4/1
)4/12/1(

4/12/1
4/12/1

4/12/14/12/1
lim

0

0

bF

F
FF

F
F

F
F

F
Fa

k

k

→

→

−=−±−

=
−−
−

=
−
−

−±
=

−±
=

m

m

m

or in other words lim . 1)(
0

=+
→

ba
k

Q.E.D.

Now that we have a sense of the dependence of the equilibria on the parameters, we can ask

whether or not they are stable. An equilibrium point of (4.2) is defined as stable if small

perturbations from the equilibrium will eventually settle back to the equilibrium point. As is

explained in depth in [10], p. 178-179, [22], p150, and in [15], p. 697-701, the stability of a

nonlinear system can be determined from the eigenvalues of the matrix obtained by linearizing

the system about the equilibrim point. Let u=p and v=q be an equilibrium point of the system,

so that:

 . (4.11) 0),(),(== qpgqpf

We linearize the system about (p,q). That is, we take a Taylor series expansion of f and g for u

and v very close to (p,q) and keep only the linear terms. We set a=(p+ε) and b=(q+δ) where ε

and δ are small, and find the Taylor series expansion about (p,q):

.),(),(),(),(),(

),(),(),(),(),(

termsorderhigherqpqpqpgqpgbagb

termsorderhigherqpqpqpfqpfbafa

b
g

a
g

t

b
f

a
f

t

+++=++==

+++=++==

∂
∂

∂
∂

∂
∂

∂
∂

δεδε

δεδε

 46
(4.12)

Noticing that and , using (4.11), and ignoring the higher order terms of (4.12)

because they are proportional to the small numbers ε and δ raised to the second degree and

higher, we rewrite (4.12) as:

tta ε= ttb δ=

).,(),(

),(),(

qpqp

qpqp

b
g

a
g

t

b
f

a
f

t

∂
∂

∂
∂

∂
∂

∂
∂

+=

+=

δεδ

δεε
 (4.13)

The solutions to (4.13) depend on the eigenvalues of the matrix

qp

qp

b
g

a
g

b
f

a
f

J

,

,



































∂
∂

∂
∂

∂
∂

∂
∂

= (4.14)

which we will call the stability matrix. The notation indicates that it is evaluated at the

equilibrium point, (p,q), where we would like to test stability.

 The solutions to (4.13) will contain terms with the eigenvalues of J in the exponent. Thus

if any of the eigenvalues of J has a positive real part, the perturbations δ and ε will increase

without bound and the system is unstable. If J’s eigenvalues have negative real parts, then the

perturbations will decrease exponentially with time and the system is stable.

For the Gray-Scott reaction system (4.2), the stability matrix is given by:

 . (4.15) 








+−
−−−

=
)(

2
2

2

, 00 kFabb
abFb

J ba

From (4.15) we can see that the eigenvalues of Jp,q, and thus the linear stability of (4.2) at (p,q),

depends on the equilibrium points and the parameters F and k. From (4.6), (4.8) and (4.9), we

know that the equilibrium points themselves depend on the parameter values F and k, so the

stability of the eigenvalues depends ultimately on F and k in our model.

Theorem 4.4: The independent equilibrium point, (a0,b0)=(1,0) is always stable for (4.2).

Proof: At (a0,b0),









+−

−
=

)(0
0

00 , kF
F

J ba . (4.16)

 47
For diagonal matrices, the eigenvalues are the diagonal entries, so (4.16) has eigenvalues of –F

and –(F+k). Since the feed rate F and the rate constant k will always be positive number, the

eigenvalues of (4.16) will always be negative for any valid choice of F and k.

Q.E.D.

Theorem 4.5: The dependent equilibrium point, (a1,b1) is always unstable for all plausible

values of F and k.

Proof: At (a1,b1),

 








+
+−−−

=



















+−





 +







 +

−−−
=

kFb
kFFb

kFb
b

kFb

b
b

kFFb
J ba 2

2

2

2

,
)(2

)(2

2

11
 (4.17)

The determinant of this matrix is

))(()(2))(()(222
11

FbkFbkFkFFbJDet ba −+=+++−−=

Since the entries of the matrix are all real, the eigenvalues of the matrix will either be real

or, if they are complex, complex conjugates of one another. If we can show that the determinant

of is negative, we will know that its eigenvalues are real and that one eigenvalue is positive,

while the other eigenvalue is negative. That is because the determinant of a matrix is the product

of its eigenvalues. The factor (F+k) is always positive because F and k are both positive values.

Our goal, therefore, is to show that the term is always negative for all plausible values

of F and k. Note here that from (4.10) that 0 and .

11baJ

11baJ

)(2 Fb −

/1≤≤ F 4 16/10 ≤≤ k

 The equilibrium point’s b value, b1, is given by:

)(2
)(4 22

1 kF
kFFFF

b
+

+−−
= .

The term inside the radical must be between 0 and 1;

1)(40 22 ≤+−≤ kFFF

since it must be positive for b1 to be real and since . It then follows that: 14/12 <≤≤ FF

 48
222222)(4)(4)(4 kFFFkFFFkFF +−≤+−≤+− .

The left inequality is true because and the right inequality is true because the term

inside the radical is less than one. We rearrange the resulting inequality to get b on the left side:

14/1 <≤F

2222)(4)(4 kFkFFFF +≤+−−

)(2
)(2

)(4 222

kF
kF

kFFFF
b +≤

+
+−−

=

Now we manipulate this expression to get it into a more convenient form:

F
kF

bF 2
)(
≤

+

.0
)(

)(
≤−

+
+− F

kF
kFFbF (4.18)

From the original polynomial (4.7), we can get an expression for b2 in terms of b:

)(
)(2

kF
kFFbFb

+
+−

= . (4.19)

Now using (4.18) and (4.19) we can show:

0
)(

)(2 ≤−
+

+−
=− F

kF
kFFbFFb ,

which means that the determinant of the matrix is negative. Therefore both its eigenvalues

are real and one eigenvalue is positive, while the other is negative. The equilibrium point (a

11baJ

1,b1)

will always be unstable for valid values of F and k.

Q.E.D.

 49

Fig. 4.6 Eigenvalues of the stability matrix for fixed k as F varies

Determining stability at the dependent equilibrium points (a2,b2) is slightly more complicated

than for (a1,b1) and (a0,b0) since it has complex eigenvalues. Figure 4.6 is a plot of the

eigenvalues of (4.15) in the complex plane evaluated at the equilibrium points as F varies

between 0.01 and 0.17 and k is held at 0.4. The eigenvalues of the dependent equilibrium point

(a2,b2) are the complex conjugates of one another, and they cross into the left half plane with

Eigenvalues of the stability matrix of(a.b)
n.IHIIH»!—He » »

M10.S2786
Hopl BflUlCMlOO pc*n

(d,^) bvi-omv. J

i a it r, a a n e.
Fig 4.7 Presence of equilibria in the diffusionless Gray-Scott model.

nonzero imaginary components. When this occurs, a family of periodic solutions appear

surrounding the equilibrium point. This phenomenon is known as Hopf bifurcation and is

discussed in detail in [15], p 706-719. The dotted line in Figure 4.7 indicates where in F-k space

these Hopf bifurcation points will

occur. Notice the behavior of the

eigenvalues in Figure 4.6 in the

different portions of the vertical line

at k=0.04. When we add diffusion

we will search for patterns around

this Hopf bifurcation line in

parameter space reasoning that these

periodic solutions in the N=0 case

Nul Clno« of th. G..y Scot! Rucaon-Oiffuvon Modal

1 "jjilit'iom point

(ib) MM» r>0 is

 50
might give rise to nonhomogeneous steady-state solutions and periodic orbits when diffusion is

added. Figure 4.7 is a reproduction of a similar diagram found in [18].

From Figure 4.6 we can also see that, as we established earlier, (a0,b0) is always stable,

and (a1,b1) is always unstable. The fact that (a1,b1) has one negative and one positive eigenvalue

also means that it is a saddle point. Figure 4.8 shows the phase plane of (4.2) for F=0.011,

k=0.04. These parameter values lie between the dotted line and the lower solid line in Figure

4.7. At these values we will therefore have three equilibrium points, two of which will be

unstable. The small cross in Figure 4.8 indicates the location of (a1,b1), and the circles represent

the other equilibria. Since (a1,b1) is a saddle point, it must have an unstable and a stable

manifold. That is, there must be a curve along which solutions are attracted and a curve along

which solutions are repelled. These are shown in the figure, and they help us understand why

solutions arising from initial values very close to the stable equilibrium point (a0,b0) sometimes

follow roundabout trajectories before they finally settle into (a0,b0).

Fig 4.8 Stable and unstable manifolds of the saddle point (a1,b1)

Now that we understand the behavior of the system without diffusion, we will try to get a

sense of what happens once diffusion is added. We will first derive the conditions for linear

 51
stability in the system once the diffusion term is included in the analysis. Consider the general

two species reaction-diffusion equation:

).,(
),,(

vugvdv
vufudu

vt

ut

+∆=
+∆=

 (4.20)

We apply the standard stability analysis of partial differential equations by analyzing the

behavior of solutions of (4.20) in a small neighborhood of (u0,v0). This procedure is similar to

the stability analysis outlined above. To that end, we make the substitutions

.
,

0

0

vvV
uuU

ε
ε

+=
+=

Linearizing f and g near the equilibrium point (u0,v0) by using a Taylor series expansion about

(u0,v0), we find that for small ε:

....)(||),(),(),(

...,)(||),(),(),(

2
),(),(0000

2
),(),(0000

0000

0000

++







∂
∂

+
∂
∂

+=++=

++







∂
∂

+
∂
∂

+=++=

εεεε

εεεε

Ov
v
gu

u
gvugvugVUg

Ov
v
fu

u
fvufvufVUf

vuvu

vuvu

But since we are concerned only with very small ε the O(ε2) terms can be ignored. Also since

(u0,v0) is an equilibrium point, the constant terms, f(u0,v0) = g(u0,v0) are zero. We are thus left

with:









∂
∂

+
∂
∂

≈









∂
∂

+
∂
∂

≈

v
v
gu

u
gVUg

v
v
fu

u
fVUf

vuvu

vuvu

),(),(

),(),(

0000

0000

||),(

||),(

ε

ε
= 








v
u

J vu 00 ,ε

where is the stability matrix
00 ,vuJ

















≡







=

),(),(

),(),(

0000

0000

||

||

vuvu

vuvu

dv
dg

du
dg

dv
df

du
df

dc
ba

J (4.21)

of the functions f and g evaluated at (u0,v0). We also note that

tt

tt

vV
uU

ε
ε

=
=

 and .
vV
uU

∆=∆
∆=∆

ε
ε

 52
Substituting U and V into (4.20), dividing out by ε, and ignoring the remaining terms that depend

on ε, we see that near equilibrium u and v satisfy the following linear partial differential

equation:

.
,

dvcuvdv
bvauudu

vt

ut

++∆=
++∆=

 (4.22)

Now let (u0,v0) be a linearly stable equilibrium point for the diffusionless system

).,(
),,(

vugv
vufu

t

t

=
=

 (4.23)

Note that the linearization of (4.23) about (u0,v0) is









=








v
u

J
v
u

vu
t

t
00 , .

The assumption that (u0,v0) is linearly stable is equivalent to assuming that the real parts of the

eigenvalues of are always negative. Let λ
00 ,vuJ 1 and λ2 be the eigenvalues of . The fact that

they are always negative means that:

00 ,vuJ

0)(21 <+==+ λλJTrda , (4.24)

and

0)(21 >==− λλJDetbcad . (4.25)

We seek solutions to (4.14) of the form

,),,(

,),,(

ij
t

ij
t

Betyxv

Aetyxu

ϕ

ϕ
λ

λ

=

=
 (4.26)

where φij(x,y) is an eigenfunction of the laplacian operator ∆, i.e., ∆ φij(x,y)= δij φij(x,y) where δij

is a negative scalar depending on the particular basis function used. Substituting (4.26) into

(4.20) yields

.ij
t

ij
t

ij
t

vijij
t

ij
t

ij
t

ij
t

uijij
t

dBecAeeBdBe

bBeaAeeAdAe

ϕϕϕδϕλ

ϕϕϕδϕλ
λλλλ

λλλλ

++=

++=

After dividing by e we have: ij
tϕλ

 53

















+

+
=








B
A

ddc
bda

B
A

vij

uij

δ
δ

λ .

So for solutions described by (4.26) to exist, λ must be an eigenvalue of the matrix

.







+

+
=

vij

uij
ij ddc

bda
D

δ
δ

 (4.27)

In order for (4.26) to be a linearly stable solution of (4.20), the eigenvalues and of (4.27)

must all have negative real parts. Using the properties of determinants and trace, this means that

aλ bλ

0)()()()(2 >=−+++ ijvuijvuij DDetbcadaddddd δδ , (4.28)

and

0)()(<+==+++ baijvuij DTrddda λλδ . (4.29)

These are necessary and sufficient conditions for stability, whether or not the eigenvalues are

complex.

 One phenomenon that is of interest in pattern formation in reaction-diffusion systems is

that of diffusion driven instability. A homogeneous equilibrium point that exhibits diffusion

driven instability will be stable for the diffusionless system (4.23), but will become unstable once

diffusion is accounted for. Diffusion is usually a process that contributes to stability in a system

by decreasing concentrations where they are unusually high, and increasing concentrations where

they are lower than the surrounding regions. In our reaction-diffusion system, we have found a

region of parameter values for which diffusion breaks the linear stability of a system. We have

found evidence of stable periodic and nonhomogeneous steady-state solutions arising in this

parameter region as the systems proceed away from the unstable homogeneous equilibrium.

Murray and others ([15],[17]) have shown in other reaction-diffusion systems that pattern

 54
formation in the form of periodic solutions and nonhomogeneous steady-state solutions can

occur for parameter values regions where diffusion driven instability has been shown to exist.

Perhaps the instability brought on by the normally restorative process of diffusion combined with

the fact that the system has several stable homogeneous solutions without diffusion is enough to

make the system unstable enough to drive solutions away from the homogeneous state, while

remaining stable enough to find the nonhomogeneous steady-state and periodic solutions in

between homogeneous equilibria that we call patterns. The following result is a necessary

condition for diffusion driven instability.

Theorem 4.6: In order for diffusion driven instability to occur in a two species reaction-

diffusion equation, the diffusion constants must be unequal. In other words, in order for a

homogeneous equilibrium solution (u1,v1) to be linearly stable for the diffusionless system (4.23),

and linearly unstable for the full system (4.24), . vu dd ≠

Proof: In order for the homogeneous equilibrium solution (u1,v1) to be linearly stable for (4.23),

conditions (4.24) and (4.25) must hold, i.e. a+d<0 and ad-bc>0. If we let the diffusion constants

equal one another, du=dv=duv, then the left side of condition (4.28) becomes

)()(22 bcaddadd uvijuvij −+++ δδ .

The first term in this expression will always be positive. The second term is also positive since

is a negative number, the diffusion constant is a positive number, and (a+d) is negative. The

last term is also positive, so (4.28) always holds.

ijδ

 With equal diffusion constants, the left side of (4.29) becomes:

uvij dda δ2++ ,

 55
which by similar reasoning is always negative causing (4.29) to hold for all parameters. Thus

(u1,v1) always satisfies sufficient conditions for stability in the full system (4.22) and will always

be stable. There can be no diffusion driven instability.

Q.E.D.

We will now see how this condition can be applied to the Gray-Scott model to find regions of

diffusion driven instability. The first thing we would like to show is that the homogeneous

equilibrium point (a0,b0) remains linearly stable for any choice of F, k and diffusion constant du

and dv.

Theorem 4.7: The homogeneous equilibrium solution to the Gray-Scott equations (4.1) at

(u0,v0)= (1,0) is linearly stable for all feasible values of F, k, du and dv.

 Proof: First of all, we know that (u0,v0)=(1,0) is a homogeneous solution for (4.1), because the

point (a0,b0)=(1,0) is an equilibrium point of the diffusionless system. In fact, Theorem 4.4

states that (a0,b0) is linearly stable for all F and k. For the Gray-Scott reaction-diffusion

equation, the matrix J from (4.21) is










+−
−−−

=







=

)(2
2

2

2

kFuvv
uvFv

dc
ba

J ,

and the matrix Dij is given by













++−
−+−−

=







+

+
=

vij

uij

vij

uij
ij dkFuvv

uvdFv
ddc

bda
D

δ
δ

δ
δ

)(2
2

2

2

. (4.30)

Substituting the values (u0,v0)=(1,0) into (4.30) we have









++−

+−
=








+

+
=

vij

uij

vij

uij
ij dkF

dF
ddc

bda
D

δ
δ

δ
δ

)(0
0

. (4.31)

The left side of condition (4.28) becomes:

 56

)())((2 kFFdkFFddd uvijvuij ++++−δδ .

Since ijδ is always negative and the reaction and diffusion parameters are always positive, this

expression is always positive and (4.28) always holds.

 For (a0,b0), the left side of condition (4.29) becomes:

)()2(vuij ddkF +++− δ .

This expression is always negative, and thus condition (4.29) holds. Since both conditions hold,

the equilibrium point (a0,b0) is stable for all valid reaction and diffusion parameter values.

Q.E.D.

 For (u2,v2)=(a2,b2), the other equilibrium point that can be linearly stable for the

diffusionless system, the conditions for stability in the full system, (4.28) and (4.29), may not

always be satisfied. In order to examine the stability of the full system with diffusion, we will

look at the real parts of the eigenvalues of the stability matrix. In the Hopf bifurcation region,

when (a2,b2) first becomes stable, the eigenvalues will always be complex conjugates of one

another. Thus the real part of one eigenvalue will be equal to the other. If this value is negative

the system is stable, and if it is positive the system is unstable. Figure 4.9 is a plot of the real

part of one eigenvalue of the matrix Dij (4.30) for F=0.0154, k=0.04, dv=0.00001, and du values

of 0.0001 and 0.00002 for the homogeneous equilibrium point (a2,b2) versus . ijδ

Figure 4.9 Real parts of the eigenvalues of matrix (4.30) as − is increased. The plot on the left has

d

ijδ

u=0.00002 and the plot on the right has du=0.0001. All other parameters are equal at F=0.0154, k=0.04, and

dv=0.00001.

57

The plot on the left shows that the real part of the greatest eigenvalue of the stability matrix

never becomes positive, and thus diffusion driven instability does not occur. On the right, we

see that the real parts of the initially stable point start negative, but suddenly one real part breaks

up and becomes positive. At this point the eigenvalues are no longer complex and the real part

of the other eigenvalue, which remains negative, is not shown. The system becomes linearly

unstable and diffusion driven instability exists. We will look at patterns for both of these

diffusion parameters, and see what effect this type of instability seems to have on the system.

This analysis seems to indicate at least initially that the magnitude of the difference between the

diffusion parameters of the morphogens is a primary factor in diffusion driven instability.

 Murray and others have examined diffusion driven instability searching for Turing

patterns. Turing’s original idea was that patterns could be driven by the diffusion terms and not

the reaction terms [15],[17],[25]. We have found some indications of pattern formation inside an

envelope of parameter values where diffusion driven instability can exist for certain modes and

diffusion coefficients.

'•■.: ■: "- .' •'. •■ ctt'ie uri.-Soi-ri -now .: -:!■: r
<^O00fe d/OOOQI

3D 10CO 1500 2000 Ä00 3X0 SCO «CO «00 5000

 58
Results

This section displays some of the patterns that we observed for various parameter values. The

values of the reaction parameters that we used, F=0.0154 and k=0.04, fall above the Hopf

bifurcation curve of Figure 4.7. With N=0, therefore (a2,b2) ≈ (0.2748, 0.2016) would be a

stable, spiral equilibrium point. Figure 5.1 shows snapshots of our simulated solution of u at

these parameter values with N=2. Recall that our diffusion constants are du=2 x 10-5 and dv=10-5.

Our initial condition is a depression centered at (x,y)=(-0.65, 0.65). By the time t reaches 5801,

we can see the form of a morphogen wave which becomes fully established by time 9801.

Figure 5.1 Simulated solution for u of the Gray-Scott model with N=2.

 59

In Figure 5.2 we have plots of a few of the coordinate functions of time from the solution

template (3.59), the ai,j(t) and bi,j(t) versus time for the solution from Figure 5.1. Notice that the

imaginary parts for a0,0(t) and b0,0(t) are essentially 0. Near time 6000 we see that the coordinate

functions for the 0,0 modes, which we will call the principal coordinate functions, seem to

Figure 5.2 - Several coordinate functions of time for F=0.0154, k=0.04, N=2. Real parts are on the right and
imaginary parts are on the left. The captions on the individual pictures refer to the index of the a vector in
the MATLAB program GAL_PEARSON2D (see appendix).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-5

-4

-3

-2

-1

0

1

2

3
x 10-11 imaginary a(13)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
real a(13)

a0,0(t)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
imaginary a(1)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
real a(1)

a-2,-2(t)

 60

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-1

-0.5

0

0.5

1

1.5
x 10-11 imaginary a(38)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.05

0.1

0.15

0.2

0.25
real a(38)

b0,0(t)

achieve a steady state. The values they obtain are not far from the spiral homogeneous

equilibrium of the N=0 problem (a2,b2) ≈ (0.2748, 0.2016). The coordinate function a1,1(t)

begins to oscillate steadily around this same time. This time also corresponds to the time at

which the wave begins to appear in Figure 5.1.

 Figure 5.3 shows what happens when we increase N. We plot u for the same parameter

values, except that N=4 for times up to 1000. This time we have placed the initial perturbation

in the center, but this does not appreciably affect the results. The perturbation spreads to the

boundaries and from the site of the perturbation a wave seems to be emanating by time 1000.

Figure 5.4 shows the contour plots of u with N=4, this time with the initial perturbation off

center again. As time increases past 1000, the circular waves emanating from the site of the

initial perturbation seem to take on transverse wavelike motion, similar to those we saw in Figure

5.1 but not as clearly defined.

As N is increased, we are able to use more modes to approximate the solution and thus

we are able to capture more detail and complexity. If waves form in the true solution for these

parameter values, they may not look like those we obtained for N=2 and N=4. However, if the

true solutions do indeed have waves, these low level approximations could prove useful in

predicting the formation of waves for a particular parameter set. Comparing the solutions near

 61
time 1000 for n=2 and n=4, there is little resemblance. We cannot be confident that our

simulated solution is close to the true solution until we can increase the number of modes

without any significant change in the simulated solution. So far N=4 is the highest number of

modes we have been able to use with MATLAB. If we were to use Neumann boundary

conditions and a smaller region, we might be able to try more modes.

 62
Figure 5.3 Surface Plots of N=4 with F=0.0154, k=0.04, for times up to 1000.

 63
Figure 3.8 u for 4 basis functions at various times, F=0.0154, k=0.04

1

:il~^5

••*»«■«* «3 B H ■

4J 41 -D> -BJ D DJ
Time

« H «1

0« .-_. .— 0
Time 1001

■1 0' 00
Time 9501
Time 7001
Time 5001
Time 3501
Time 2501
Time2001

 OZ 0> OS 03 ■

 64
 All of the patterns above have been periodic, oscillating with time in a predictable

manner. Motivated by our analysis of diffusion driven instability, we alter the diffusion

Figure 5.5- Gray-Scott Model with new diffusion rates, du=0.0001, dv=0.00001, N=4, F=0.0154,
k=0.04, time up to 1000. The contour maps all represent the concentration of u where red is most
concentrated and blue is least concentrated except for the final picture which shows the
concentrations of v near time 1000 right beside its corresponding concentration u.

-I -OS -06 -04 -02 02 0 4 06 08 1

-1 -0.8 -0.6 -0.4 -02 0 02 0.4

-1 -08 -0 6 -0.4 -0 2
v
u

 65
constants to obtain what seems to be a nonhomogeneous steady state solution. Figure 5.5

shows our simulated solution for N=4, F=0.0154, and k=0.04. This time our diffusion

constants are du = 10-4 and dv = 10-5. Now the diffusion constants differ by a multiple of

10 rather than 2 as they did in Figures 5.1-5.4. We start with a perturbation in the center

this time. The initial condition on v is small positive perturbation from zero centered at

the origin as well. As the simulation proceeds, we see that the concentration of u initially

falls off from around the perturbation. Near the center, u forms a region of high

concentration and then seems to break into four regions of increased concentration that

spread towards the boundaries. This process of forming a concentrated region near the

center and then breaking off repeats itself until the solution begins to settle into a

checkerboard pattern of alternating high and low concentrations which then become

stationary waves. Notice that the concentration of morphogens u and v are nearly

complimentary at the final time. Gierer and Meinhardt showed in their activator/inhibitor

reaction-diffusion system that the diffusion constants must differ significantly in order for

patterns to occur [10].

 We have shown numerical evidence to support the notion that reaction-diffusion

equations have periodic solutions and nonhomogeneous steady state solutions. We have

only used a few modes, and yet we have generated some complicated patterns and

structures for the Gray-Scott model. Other researchers have been able to generate and

classify many of the patterns that can be generated by various reaction-diffusion systems,

([5], [9],[11],[12],[14],[15],[17],[18],[19],[20],[24],[26],[28]). These systems, which are

derived from the most basic physical and chemical laws, seem to take on a life of their

 66
own given the right conditions. As research in this area proceeds, it will be interesting to

see how well we can predict and control these self-organizing systems.

 67
Bibliography
[1] Fletcher, C.A.J. Computational Galerkin Methods. Springer Series in Computational
Physics. Springer-Verlag. New York 1984.

[2] Grindrod, Peter. The Theory and Applications of Reaction-Diffusion Equations:
Patterns and Waves. 2nd Ed.:Oxford, Clarendon Press;1996

[3] Gollub, Gene H. and James M. Ortega. Scientific Computing and Differential
Equations: An Introduction to Numerical Methods. Academic Press, INC. San Diego
1992.

[4] Gottlieb, David, and Steven Orszag. Numerical Analysis of Spectral Methods:
Theory and Applications. CBMS-NSF regional Conference series in applied
mathematics. Society for Industrial and Applied Mathematics. Philadelphia 1997

[5] Gray P. and S.K Scott, Chem. Eng. Sci 38,29 1983; ibid 39 1087 (1984); J. Phys.
Chem. 89, 22, (1985).

[6] Haberman, Richard, Elementary Applied Partial Differential Equations: With Fourier
Series and Boundary Value Problems. 3rd Ed. Prentice-Hall, Inc. Upper Sadle River, NJ
1998.

[7] Hoffman, K and R. Kunze, Linear Algebra. 2nd Ed. Prentice-Hall, Inc. Englewood
Cliffs, NJ 1971.

[8] Kopell, Nancy. Networks of neurons as dynamical systems: From Geometry to
Biophysics. Quarterly of Applied Mathematics 55 no.4, 707-718 (1998)

[9] Koch, A.J. and H. Meinhardt. “Biological Pattern Formation: from basic mechanisms
to complex structures. Rev. Mod. Phys. 66 no. 4, 1481-1507 (Oct 1994)

[10] Kreyszig, Erwin. Advanced Engineering Mathematics, 2nd Ed. : John Wiley & Sons;
1993.

[11] Maini, Philip K. and Hans Othmer Eds. Mathematical models for biological pattern
formation. Dedicated to Professor James D. Murray. The IMA Volumes in Mathematics
and its Applications, 121. Frontiers in Application of Mathematics. Springer-Verlag, New
York, 2001.

[12] Maini, Philip K. Maini, Gerhard C. Cruywagen, and James D. Murray. Biological
pattern formation on two-dimensional spatial domains: a nonlinear bifurcation analysis.
SIAM Journal of Applied Mathematics 57 no.6 1485-1509 (1997)

[13] Malek-Madani, Reza. Advanced Engineering Mathematics: with Mathematica and
Matlab, Vol 2.:Addison Wesley Longman;1998

 68

[14] Meinhardt, Hans. “Beyond Spots and Stripes: Generation of More Complex
Patterns By Modifications and Additions of the Basic Reaction”. In [8]. 143+

[15] Murray, John D. Mathematical Biology. Second ed. Springer-Verlag, Berlin 1989.

[16] Orszag, Steven A. “Spectral Methods for Problems in Complex Geometries”.
Journal of Computational Physics. 37, 70-92 (1980)

[17] Ouyang, Qi, and Harry L. Swinney. “Transition from a uniform state to hexagonal
and striped Turing patterns.” Nature. Vol. 352 610-612 (aug 1997)

[18] Pearson, John E. “Complex Patterns in a Simple System” Science. 261 189-194 (Jul
1993)

[19] Petrov, Valery, Qi Ouyang & Harry L. Swinney. “Resonant Pattern Formation in a
Chemical System” Nature. Vol. 388 655-657, (aug 1997)

[20] Schofield, Peter, Mark Chaplain and Stephen Hubbard. “Mathematical Modelling of
Host –Parisitoid Systems: Effects of Chemically Mediated Parasitoid Foraging Strategies
on Within- and Between-generation Spatio-temporal Dynamics”. J. theor. Biol. (2002)
212, 31-47.

[21] Selkov, E.E. Eur. J. Biochem. 4 79 (1968))

[22] Sheisser, W.E. The Numerical Method of Lines -- Integration of Partial Differential
Equations, San Diego: Academic Press Inc., 1991.

[23] Trefethen, Lloyd N. Spectral Methods in MATLAB. Philadelphia, PA: Society for
Industrial and Applied Mathematics. 2000

[24] Tsai, Leo L., Hutchison, Geoffrey R., and Enrique Peacock-Lopez. “Turing patterns
in a self-replicating mechanism with a self complementary template.” Journal of Chem.
Phys. 113 no 5, 2003-2006.

[25] Turing, Alan M The Chemical Basis of Morphogenesis. Philisophical Transactions
of the Royal Society of London 237 Aug (1952) . 37-72

[26] Williams, Roy Xmorphia http://www.cacr.caltech.edu/ismap/image.html cited 28
Feb 2001.

[27] Wolpert, Lewis. The Triumph of the Embryo. Oxford University Press, 1991,

[28] Wollkind, David J. and Laura E. Stephenson. “Chemical Turing Patterns: A Model
System of a Paradigm for Morphogenesis”. In [8] 113+

http://www.cacr.caltech.edu/ismap/image.html

 A-1
APPENDIX: MATLAB programs

Table Of Contents

Galerkin Method A-2
 BASIS A-2

GAL_ALLENCAHNQUICK A-3
 GAL_ALLENCAHNQUICKDEQN A-4

GAL_BURGERQUICK A-5
 GAL_BURGERDEQN A-6

GAL_BURGERDISPLAY A-6
 GAL_HEAT A-8
 GAL_HEATDEQN A-9
 GAL_PEARSON2D A-10
 GAL_PEARSON2DDEQN A-12
 GAL_1DPDEDISPLAY A-13

GAL_2DPDEDISPLAY A-14
 GAL_ABRECONSTRUCT A-15

Gray-Scott Analysis A-16
 GAL_2DGS_N0EIGENVALS A-16
 GAL_2DGS_HOPFFIND A-18
 GAL_2DGS_FIELDPLOTS A-19
 GAL_PEARSON0DEQN A-20
 GAL_DDINSTABILITY A-21

 A-2

Galerkin Method

BASIS
function z=basis(n,x,bas)
%this function sets up a basis function for the cosine basis, the
chebyshev basis, or the sin basis,
%the arguments are n- the integer corresponding to the basis function n
is any integer from zero up.
%x is the independant variable, in symbolic or numeric form.
%basis is one of three arguments:
%1 gives the basis cos(n*pi*x)
%2 gives the basis sin(n*pi*x)
%3 gives the chebyshev polynomial basis T(n)

if bas==1
 %cos basis
 z=cos(n*pi*x);
elseif bas==2
 %sin basis
 z=sin(n*pi*x);
elseif bas==3
 %chebyshev polynomial basis
 %it works symbolically, or numerically. basis

 %symbolic clause
 if isa(x,'sym')==1
 n=n+1;
 %T(0)
 if n==1
 z=1;
 %T(1)
 elseif n==2
 z=[1,0];
 %T(n) n>=3
 else
 %first it does it with the vectors and then converts
 %to syms
 %polynomials represented as vectors
 zn1=[1];
 z=[1,0];
 for j=3:n
 zn2=zn1;
 zn1=z;
 z=conv([2,0],zn1);
 z=z-[zeros(1,length(z)-length(zn2)),zn2];
 end

 %now converting the polynomial back to syms
 m=length(z);
 for k=m-1:-1:0
 zx(m-k)=[x^(k)];
 end
 z=zx.*z;

 A-3
 %this last line converts a vector of syms to the actual
polynomial
 z=sum(z);
 end
 return

 else
 %this loop does the chebyshev polynomial at a point x
 n=n+1;
 if n==1
 z=1;
 elseif n==2
 z=x;
 else
 zz(1,:)=ones(size(x));
 zz(2,:)=x;
 for j=3:n
 zz(j,:)=2*x.*zz(j-1,:)-zz(j-2,:);
 end
 z=zz(n,:);
 end
 end

else
 'Error-not a valid basis number. Try help on BASIS to see what
numbers are valid'
 return
end

GAL_ALLENCAHNQUICK
function [u,x,t]=gal_allencahnquick(nn,eps2,tvec,xvec)
%[u,x,t]=gal_allencahnquick(4,.01,100,[-1:.01:1]);
%gal_pdedisplay(u,x,t);
%does the allen cahn equation ut=uxx+u-u^3 on -1..1
%with boundary conditions u(-1,t)=-1, u(1,t)=1,
%and initial condition u(x,0)=.53*x+.47*sin(-1.5*pi*x)

%setting the global variables for the nonlinearities and nonhomogeneous parts
for use in the deqn
global nonhomogeneous
global nonlinear1
global nonlinear2
global nonlinear3
global eps
eps=eps2;

tic,
aa=min(xvec);
bb=max(xvec);
for j=1:nn
 nonhomogeneous(j)=quadl(@nonhomog,aa,bb,[],[],j);
 initialcond(j)=quadl(@init,aa,bb,[],[],j);
 for k=1:nn
 nonlinear1(j,k)=quadl(@nonlin1,aa,bb,[],[],j,k);
 for m=1:nn
 nonlinear2(j,k,m)=quadl(@nonlin2,aa,bb,[],[],j,k,m);

 A-4
 for q=1:nn
 nonlinear3(j,k,m,q)=quadl(@nonlin3,aa,bb,[],[],j,k,m,q);
 end
 end
 end
end,
toc
'global variables done'
tic,
[t,a]=ode45('gal_allencahnquickdeqn',tvec,initialcond);
'odes solved',
toc

tic,
x=xvec;
m=length(t);
for j=1:nn
 sinvec(j,:)=sin(j*pi*x);
end
size(sinvec)
size(x)
size(a)
size(a(1,:))
for j=1:m
 u(j,:)=x+a(j,:)*sinvec;
end,
toc

%functions for the global variables for the nonlinearities and nonhomogenous
parts
function y=nonhomog(x,j)
y=(x-x.^3).*sin(j*pi*x);

function y=init(x,j)
%y=(.53*x+.47*sin(-1.5*x*pi)-x).*sin(j*pi*x);
y=(.1*x+.9*sin(-1.5*x*pi)-x).*sin(j*pi*x);
function y=nonlin1(x,j,k)
y=x.^2.*sin(j*pi*x).*sin(k*pi*x);

function y=nonlin2(x,j,k,m)
y=x.*sin(j*pi*x).*sin(k*pi*x).*sin(m*pi*x);

function y=nonlin3(x,j,k,m,q)
y=sin(j*pi*x).*sin(k*pi*x).*sin(m*pi*x).*sin(q*pi*x);

GAL_ALLENCAHNQUICKDEQN
function dadt=gal_allencahnquickdeqn(t,a)
%differential equation called in gal_allencahnquick
global nonhomogeneous
global nonlinear1
global nonlinear2
global nonlinear3
global eps

nn=length(nonhomogeneous);
for j=1:nn

 A-5
 nonlin2vec(j)=0;
 nonlin3vec(j)=0;
 for k=1:nn
 for m=1:nn

nonlin2vec(j)=nonlin2vec(j)+a(k)*a(m)*nonlinear2(j,k,m);
for q=1:nn
nonlin3vec(j)=nonlin3vec(j)+a(k)*a(m)*a(q)*nonlinear3(j,k,m,q
);
end

 end
 end
 end
dadt=a-eps*pi^2*((1:nn)'.^2).*a+nonhomogeneous'-3*nonlinear1*a-
3*nonlin2vec'-nonlin3vec';

GAL_BURGERQUICK
function [t,x,u]=gal_burgerquick(NN,eps,tvec,xvec)
% this function finds a galerkin approximation to burgers' equation
% ut=eps*uxx-u*ux
%for dirichlet boundary conditions u(0,t)=u(1,t)=0 for x=[0,1]
%eps is the inverse of the reynold's number.
%sin(j*pi*x) is the basis function used
%the ODE solver used is ODE45
%
%inputs: NN-- Number of basis functions used
% eps-- diffusion parameter, inverse of reynold's number
% tvec-- time of simulation- can be either a final time or a
vector of times
% at which the solution is evaluated
%
%
%outputs: t-- times at which solution is simulated, equal to tvec or
else output of ode45
% x-- points along x axis where x is evaluated, equal to xvec
% u-- output, values of u at points along x and t. u has
length(t) rows and length(x) columns
%
%Syntax:
% [t,x,u]=gal_burgerquick(32,.01,1,[0:.01:1])
%
%See also: GAL_BURGERQUICKDEQN,GAL_BURGERDISPLAY, GAL_BURGER,
GAL_BURGERDEQN

tic,
%find initial values of a's
initfcn(1,2)
for j=1:NN
 init(j)=quadl(@initfcn,1/4,1/2,[],[],j);
end
'initial condition finished',
toc

%create P matrix where
P(i,j,m)=(sin(j*pi*x)*sin(k*pi*x)*pi*cos(m*pi*x))
%uses a trick

 A-6
global P2 eps2
tic,
for j=1:NN
 for k=1:NN
 for m=1:NN
 if j+m==k
 P(j,k,m)=-pi*k/4;
 elseif abs(j-m)==k
 P(j,k,m)=pi*k/4;
 end
 end
 end
 end
'P matrix finished',
P2=P;
eps2=eps
toc

tic,
%do ODE routine
[t,a]=ode45('gal_burgerquickdeqn',tvec,init);
'odes solved',
toc

tic,
%reconstruct solution
x=xvec;
for j=1:length(t)
 u(j,:)=zeros(size(x));
 for k=1:NN
 u(j,:)=u(j,:)+a(j,k)*sin(k*pi*x);
 end
end,
'solution constructed',
toc

function z=initfcn(y,m)
z=sin(m*pi*y).*(1-cos(8*pi*y));

GAL_BURGERQUICKDEQN
function da=gal_burgerquickdeqn(t,a,eps)
%differential equation referenced in GAL_BURGERDEQN

global P2 eps2
NN=length(a);
for j=1:NN
 nonlin(j)=a'*P2(:,:,j)*a;
end
da=-pi^2*eps2*([1:NN]'.^2).*a-2*nonlin';

GAL_BURGERDISPLAY
function M=gal_burgerdisplay(t,x,u)

 A-7
%utility for plotting the output of burger's equation files.
%
%inputs: t-- times at which solution is simulated, equal to tvec or
else output of ode45
% x-- points along x axis where x is evaluated, equal to xvec
% u-- output, values of u at points along x and t. u has
length(t) rows and length(x) columns
%
%Output: M- a movie that shows the evolution of burger's equation over
time
% figure(1) contour plots of u(x,t)
% figure(2) surface plot of u(x,t), to show changes over time
%
%see also: GAL_BURGER, GAL_BURGERDEQN, GAL_BURGERQUICK,
GAL_BURGERQUICKDEQN

cla
%routine for the titles
blab=input('what basis? \n','s');
tspan=input('what time span? \n','s');
xspan=input('what domain? \n','s');
n=input('how many basis functions? \n')
%contour plots of u(x,t) v.s. x
figure(1)
view (2)
plot(x,u','k')
xlabel('x')
ylabel('u(x,t)')
title('Burger''s equation contour plot')
legend(['n=',int2str(n)],['basis=',blab],['time=',tspan],['x=',xspan])

%surface plot of u(x,t)in space and time
figure(2)
surf(x,t',u)
xlabel('X')
ylabel('time')
zlabel('u(x,t)')
title('Burger''s equation surface plot')
legend(['n=',int2str(n)],['basis=',blab],['time=',tspan],['x=',xspan])

j=input('movie? 1 if no, 2 if yes')
if j==1
 return
end

%movie routine
figure(3)
hold off
plot(x,u(1,:))
v=axis
xlabel('x')
ylabel('u(x,t)')
title('Burger''s equation movie')
m=length(t);
M=moviein(m);

 A-8

for j=1:m
 plot(x,u(j,:))
 axis(v)
 M(:,j)=getframe;
 hold off
end

GAL_HEAT
%This script file finds a solution for the Heat Equation in one
dimension using the Galerkin Method
%on the interval [0,1]
%and then plots the solution at various times.
%the amount of time is an input t
%the number and type of basis functions are inputs n, bn.
%the boundary conditions u(t,0) and u(t,1) are inputs ut0,ut1.

clear all
%n is the number of basis functions
n=4

%bn indicates the type of basis function
%1 gives the basis cos(n*pi*x)
%2 gives the basis sin(n*pi*x)
%3 gives the chebyshev polynomial basis T(n)
bn=2

%these are the boundary conditions u(t,0)=ut0 and u(t,1)=ut1
ut0=1
ut1=2

%%degree of PDE for t
tdeg=1

%t is the time we let the simulation run
t=10

%sets up a as a matrix of the functions in time and their derivatives
%also sets up bv as a vector of symbolic basis functions
x=sym('x');
for j=0:n
 for k=0:tdeg
 a(k+1,j+1)=sym(['a',int2str(j),int2str(k)]);
 end
 bv(j+1)=basis(j,x,bn);
end
a
bv

%gives a generic linear function to satisfy the boundary conditions
u(0,t), u(1,t). We will call this
%the inital condition function g=u(x,0)
g=(ut1-ut0)*x+ut0

 A-9

%plugs the assumed solution into the left (eqnl) and right (eqnr) sides
of the equation.
%k is the heat constant
%f is the source (can be in the symbolic variable x if desired)

k=3
f=1
ya=a(1,:).*bv;
ya=[g,ya]
dyadt=a(2,:).*bv

eqnr=sum(k*diff(ya,x,2))+f
eqnl=sum(dyadt)

%multiplies both the left and right hand sides by the basis function
and then integrates from 0 to 1
for j=0:n
 vl(j+1)=int(eqnl.*bv(j+1),x,0,1);
 vr(j+1)=int(eqnr*bv(j+1),x,0,1);
end

global vl
global vr
vl
vr

%since
bc=zeros(n,1)
[t,avec]=ode45('gal_heatDEQN',10,bc);
xv=0:.01:1;

%avec(1,:).*bv
%sum(avec(1,:).*bv)
%subs(sum(avec(j,:).*bv),x,xv)
cla
hold on
for j=1:length(t)
 plot(xv,xv+1+subs(sum([0,avec(j,:)].*bv),x,xv))
end
%computes value for differential equation using the inital conditions

GAL_HEATDEQN
function s=gal_heatDEQN(t,v)
s(1)=2*(-1/(2*pi)*3*pi^3*v(1)+4/(2*pi));
s(2)=2*-6*pi^2*v(2);
s(3)=2*-1/(6*pi)*(81*pi^2*v(3)-4);
s(4)=2*-24*pi^2*v(4);
s=s';

%global vl
%global vr

 A-10
%n=length(vl);

%dpolynorm=dpoly/dpoly(1);
%for j=1:n
 % scoeff=sym2poly(vl(j));
 % vpoly=sym2poly(vr(j));
% while length(vpoly<2);
% vpoly=[0,vpoly];
% end
% vcoeff=vpoly(1);
% vscalar=vpoly(2);
% s(j)=vcoeff/scoeff*v(j)+vscalar/scoeff;
%end
%s

GAL_PEARSON2D
function [u,v,ab,X,t,init]=gal_pearson2D(NN,F2,k2,Xvec,tvec)
%[u,v,ab,X,t,init]=gal_pearson2D(NN,F2,k2,Xvec,tvec)
%[u,v,ab,X,t,init]=gal_pearson2D(4,.0152,.04,[[-1:.01:1]',[-
1:.01:1]'],1000);
%this function solves Pearson's 2 morphogen reaction-diffusion equation
in 2 dimensions
%using the galerkin spectral method with periodic boundary conditions.
The resulting ODE's are solved
%using ODE45 (runge kutta 4 method, forward time differencing).
%
%the equations are defined as
%
%ut=du*laplacian(u)-uv^2+F(1-u)
%vt=dv*laplacian(v)+uv^2-(F+k)v
%
%u,v: The concentrations of each morphogen
%F: Dimensionless feed rate
%k: Dimensionless rate constant
%du,dv: Diffusion constants for u and v respectively
%
%%Ref: Complex Patterns in a Simple System, John E. Pearson, Science,
V261, 5118, 9 Jul 1993 189-192
%
%Inputs:
%NN2=number of basis functions used
%F2,k2-scalar parameters
%Xvec- 2 column space vector, column one is the X coordinate, column 2
is the Y coordinate
%tvec- time vector discretizing time for ODE45
%
%Outputs:
%u,v- Morphogen concentrations
%X- Xvec
%t- tvec
%
%See GAL_PEARSON2DDEQN

%initialize global variables F,k,du,dv,parameters, NN, basis number,
M2, sparse

 A-11
%inner product matrix
global F kk du dv
F=F2;
kk=k2;
du=.00002;
dv=.00001;

%finds the vector of constants for the Laplacian, G
global G
G=-NN:NN;
G=G.^2;
n=1;
for k=G;
 G2(:,n)=G'+k;
 n=n+1;
end
G=G2(:);

%finds initial condition
tic,
for p=-NN:NN
 for q=0:NN %-NN:NN
 %initu(p+NN+1,q+NN+1)=quadl(@initcondu,-
1,1,[],[],p)*quadl(@initcondu,-1,1,[],[],q);
 initu(p+NN+1,q+1)=dblquad(@initcondu,-1,1,-1,1,[],@quadl,p,q-
NN);
 initu(NN+1-p,2*NN+1-q)=conj(initu(p+NN+1,q+1));
 %initv(p+NN+1,q+NN+1)=quadl(@initcondv,-
1,1,[],[],p)*quadl(@initcondv,-1,1,[],[],q);
 initv(p+NN+1,q+1)=dblquad(@initcondv,-1,1,-1,1,[],@quadl,p,q-
NN);
 initv(NN+1-p,2*NN+1-q)=conj(initv(p+NN+1,q+1));
 end
end,
initu=initu(:)/4;
initv=initv(:)/4;
init=[initu;initv];
'init matrix finished',
toc

%Calling the ODE solver
%[t,ab]=ode45('gal_pearson2Dexpdeqn',tvec,init);,
tic,
[t,ab]=ode45('gal_pearson2Ddeqn',tvec,init);
'ode''s solved',
toc

%constructing the solution
tic,
x=Xvec(:,1)';
y=Xvec(:,2);
X=Xvec;
u=zeros(length(x),length(y),length(t));
v=zeros(length(x),length(y),length(t));

 A-12

for j=1:length(t)
 for k=1:size(ab,2)/2
 p=mod(k,2*NN+1);
 if p==0
 p=2*NN+1;
 end
 p=p-(NN+1);
 q=ceil(k/(2*NN+1));
 q=q-(NN+1);
 modey=exp(i*pi*q*y);
 modex=exp(i*pi*p*x);
 u(:,:,j)=u(:,:,j)+ab(j,k)*modey*modex;
 v(:,:,j)=v(:,:,j)+ab(j,k+size(ab,2)/2)*modey*modex;
 end
end,
'solution constructed',
toc

function z=initcondu(x,y,p,q) %,k)
%z=exp(-i*pi*k*x).*(1+.1*(x.^2-1));
%z=1-.5*(exp(-20*(x-.1).^2))*(exp(-20*(y)^2)); %-1/16*exp(-20*(x-
.1).^2)*exp(-30*(y-.1)^2);
z=1-.5*(exp(-20*(x+.7).^2))*(exp(-20*(y-.75)^2)); %-1/16*exp(-20*(x-
.1).^2)*exp(-30*(y-.1)^2);
z=exp(-i*pi*(p*x+q*y)).*z;

function z=initcondv(x,y,p,q) %,k)
%z=exp(-i*pi*k*x).*(.1*(1-x.^2));
%z=.25*(exp(-20*(x-.05).^2))*(exp(-20*y^2)); %+1/16*exp(-20*(x-
.15).^2)*exp(-30*(y-.1)^2);
z=.25*(exp(-20*(x+.7).^2))*(exp(-20*(y-.65)^2)); %+1/16*exp(-20*(x-
.15).^2)*exp(-30*(y-.1)^2);
z=exp(-i*pi*(p.*x+q*y)).*z;

GAL_PEARSON2DDEQN

function dabdt=gal_pearson2Ddeqn(t,ab)
%two dimensional head equation differential equation called in
gal_heat2D.
%this program sets up the system of differential equations inolving the
a(m,n)(t)

global F kk G du dv
NN=(sqrt(length(ab)/2)-1)/2;

a=ab(1:length(ab)/2);
b=ab(length(ab)/2+1:end);
%does the a's without the nonlinear part. The extra 4*Fv is added
because it is the (phi(0,0),F) term. For every
%other equation, this disappears

 A-13
Fv=zeros(size(a));
Fv(((2*NN+1)^2+1)/2)=F;

dabdtu=(-du*pi^2*G-F).*a+Fv; %-sum(nonlinear);
%does the b's
dabdtv=(-dv*pi^2*G-F-kk).*b; %+sum(nonlinear);
for j=1:2*NN+1
 bm(:,j)=b((j-1)*(2*NN+1)+1:j*(2*NN+1));
end
bm2=[zeros(2*NN,6*NN+1);[zeros(2*NN+1,2*NN),bm,zeros(2*NN+1,2*NN)];zero
s(2*NN,6*NN+1)];

for q=-NN:NN
 for p=-NN:NN
 for k2=-NN:NN
 for k1=-NN:NN
 for m2=-NN:NN
 for m1=-NN:NN

bmpq(k1+NN+1+(k2+NN)*(2*NN+1),m1+NN+1+(m2+NN)*(2*NN+1))=bm2((p-k1-
m1)+3*NN+1,(q-k2-m2)+3*NN+1);
 %bmpq(k1k2,m1m2)
*bm2(p-k1-m1,q-k2-m2)
 end
 end
 end
 end
 nonlin(p+NN+1+(q+NN)*(2*NN+1))=sum(sum((a*b.').*bmpq));
 %nonlin(p,q) = sum(ak1,k2 x bm1*m2 x b(p-m1-
k1),(q-m2-k2)
 end
end
dabdtu=dabdtu-nonlin(:);
dabdtv=dabdtv+nonlin(:);
dabdt=[dabdtu;dabdtv];

GAL_1DPDEDISPLAY

function M=gal_1Dpdedisplay(t,x,u)
%type gal_1Dpdedisplay(t,x,u) to dislpay the results as a
%contour map, a surface plot or a movie
%plotting
cla

%routine for the titles
tit=input('input Title\n','s');
blab=input('what basis? \n','s');
tspan=input('what time span? \n','s');
xspan=input('what domain? \n','s');
n=input('how many basis functions')
%contour plots of u(x,t) v.s. x
figure(1)
view (2)

 A-14
plot(x,u')
xlabel('x')
ylabel('u(x,t)')
title(tit)
legend(['n=',int2str(n)],['basis=',blab],['time=',tspan],['x=',xspan])

%surface plot of u(x,t)in space and time
figure(2)
surf(x,t',u)
xlabel('X')
ylabel('time')
zlabel('u(x,t)')
title([tit,'surface plot'])
legend(['n=',int2str(n)],['basis=',blab],['time=',tspan],['x=',xspan])

j=input('movie? 1 if no, 2 if yes')
if j==1
 return
end

%movie routine
figure(3)
hold off
plot(x,u(1,:))
v=axis
xlabel('x')
ylabel('u(x,t)')
title([tit,' movie'])
m=length(t);
M=moviein(m);

for j=1:m
 plot(x,u(j,:))
 axis(v)
 M(:,j)=getframe;
 hold off
end

GAL_2DPDEDISPLAY

function M=gal_2Dpdedisplay(u,X,t)
%produces movie images for given 2D pde data in the form:
%t= time vector
%X= space, x in column 1, y in column 2
%u= u(x,y,t)= the value of the function at x,y and t

cla
tit=input('Input Title\n','s')
%movie routine
f=input('Surface(2) or Contour (1)\n')

 A-15
if f==1

hold off
x=X(:,1);
y=X(:,2);
xlabel('x')
ylabel('y')
title(tit)
m=length(t);
M=moviein(m);
for j=1:m
 contour(x,y,u(:,:,j))
 title(tit)
 M(:,j)=getframe;
 hold off
end

elseif f==2

hold off
x=X(:,1);
y=X(:,2);
u=real(u);
v=[-1,1,-1,1,min(min(min(u))),max(max(max(u)))];
xlabel('x')
ylabel('y')
zlabel('u(x,y,t)')
title(tit)
m=length(t);
M=moviein(m);
for j=1:m
 mesh(x,y,u(:,:,j))
 axis(v)
 title(tit)
 M(:,j)=getframe;
 hold off
end
else

 'wrong input'

end

GAL_ABRECONSTRUCT
function [u,v]=gal_abreconstruct(ab,t,init)
%this function reconstructs u and v from given ab vector, t, and init
values from
%2D pde results:
%
%inputs: ab- length(t)xlength(init) vector of coefficient functions
% t- times at which coefficient functions are evaluated
% init- initial conditions for the ab same as ab(:,1)
%

 A-16
%syntax: [u,v]=gal_abreconstruct(ab,t,init)

tic,
x=[-1:.01:1];
y=x';

u=zeros(length(x),length(y),length(t));
v=zeros(length(x),length(y),length(t));
NN=(sqrt(length(ab)/2)-1)/2;

for j=1:length(t)
 for k=1:size(ab,2)/2
 p=mod(k,2*NN+1);
 if p==0
 p=2*NN+1;
 end
 p=p-(NN+1);
 q=ceil(k/(2*NN+1));
 q=q-(NN+1);

 modey=exp(i*pi*q*y);
 modex=exp(i*pi*p*x);
 u(:,:,j)=u(:,:,j)+ab(j,k)*modey*modex;
 v(:,:,j)=v(:,:,j)+ab(j,k+size(ab,2)/2)*modey*modex;
 end
end,
'solution constructed',
toc

Gray-Scott Analysis

GAL_2DGS_N0EIGENVALS
%eigenvalue movie for the diffusionless Grey Scott Model
%
% a_t=-a*b^2-F(1-a)
% b_t=a*b^2+(F+k)b
%
%This routine creates a movie of the eigenvalues of the derivative
matrix of {a_t(a,b),b_t(a,b)}
%evaluated at the equilibrium points of the system in the complex plane
when k is held constant
%at .04 and F varies in order to examine local stability of the
equilibrium points.

cla
hold on
k=.04
xlabel('real axis')
ylabel('imaginary axis')
n=1
Fi=.01

 A-17
Ff=.17
df=.0001
for j=Fi:df:Ff
 F=j;
 eq0=[-F,0;0,-(F+k)];
 eig0=eig(eq0);
 figure(1)
 axis([-.25,.15,-.15,.15]);
 hold on
 plot(eig0,zeros(size(eig0)),'x')
 r=roots([F+k,-F,F^2+F*k]);
 r=sort(r);
 b=r(1);
 a=(F+k)/b;
 eq1=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)];
 eig1=eig(eq1);
 figure(2)
 axis([-.25,.15,-.15,.15]);
 hold on
 if isreal(b)==1
 if isreal(eig1)==1
 plot(eig1,zeros(size(eig1)),'x')
 else
 plot(eig1,'x')
 end
 end

 b=r(2);
 a=(F+k)/b;
 eq2=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)];
 eig2=eig(eq2);
 figure(3)
 axis([-.25,.15,-.15,.15]);
 hold on
 if isreal(b)==1
 if isreal(eig2)==1
 plot(eig2,zeros(size(eig2)),'x')
 else
 plot(eig2,'x')
 end
 end
 %M(:,n)=getframe;
 n=n+1;
end
figure(1)
plot([0,0],[-.15,.15],'k')
plot([-.25,.15],[0,0],'k')
xlabel('real axis')
ylabel('imaginary axis')
text(-.25,.15,'Eigenvalues of the stability matrix of (a_0,b_0)')
text(-.23,.125,['k=',num2str(k),', F increases from ',num2str(Fi),' to
',num2str(Ff)]);

figure(2)
plot([0,0],[-.15,.15],'k')

 A-18
plot([-.25,.15],[0,0],'k')
xlabel('real axis')
ylabel('imaginary axis')
text(-.25,.15,'Eigenvalues of the stability matrix of (a_1,b_1)')
text(-.23,.125,['k=',num2str(k),', F increases from ',num2str(Fi),' to
',num2str(Ff)]);

figure(3)
plot([0,0],[-.15,.15],'k')
plot([-.25,.15],[0,0],'k')
xlabel('real axis')
ylabel('imaginary axis')
text(-.25,.15,'Eigenvalues of the stability matrix of (a_2,b_2)')
text(-.23,.125,['k=',num2str(k),', F increases from ',num2str(Fi),' to
',num2str(Ff)]);

GAL_2DGS_HOPFFIND
%find value of F where eig2 crosses the axis and becomes stable
k=.04-->F=.0152786
%answer gives estimate that is less than the true answer by no more
than tol
cla
hold on
n=1
tol=10^-10
for k=0:.0005:.0625
 %finds starting F value
 F=roots([-4,1-8*k,-4*k^2,0]);
 F=F(F>0);
 Fmin=min(F);
 Fmax=max(F);
 eq3bot(n,:)=[k,Fmin];
 eq3top(n,:)=[k,Fmax];
 %adds a bit to starting value to be sure that the equilibrium is
real but not
 %enough to make it stable
 F=Fmin+.00001;
 %initializes eig2 for while loop
 r=roots([F+k,-F,F^2+F*k]);
 r=sort(r);
 b=r(2);
 a=(F+k)/b;
 eq2=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)];
 eig2=eig(eq2);

 %set initial step value
 d=.001;
 %outer while loop decreases step value until it is within tolerance
 while d>tol
 %inner while loop tests eig2 for stability
 while real(eig2)>0
 F=F+d;
 r=roots([F+k,-F,F^2+F*k]);
 r=sort(r);

 A-19

 b=r(2);
 a=(F+k)/b;
 eq2=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)];
 eig2=eig(eq2);
 end
 %sets F to just above where it broke the while loop so it can
go through again at
 %higher tolerance with a reinitialized eig(2)
 F=F-d;
 r=roots([F+k,-F,F^2+F*k]);
 r=sort(r);

 b=r(2);
 a=(F+k)/b;
 eq2=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)];
 eig2=eig(eq2);

 %decreases step value
 d=d*.1;
 end
 %stores answers
Fhopf(n)=F;
n=n+1;
end

eq3=[eq3bot([2:end],:);flipud(eq3top)];
plot(eq3(:,1),eq3(:,2))
kvec=eq3bot(2:end,1);
Fhopf=Fhopf(2:end);
plot(kvec',Fhopf,'--')

GAL_2DGS_FIELDPLOTS
%plots fieldlines and equilibrium points. Can be altered to make a
movie as F is varied
n=1
figure(2)
for j=.0154
cla
hold on

F=j
k=.04
umin=0
umax=1
vmin=0
vmax=1
spa=20
time=100

%plotting the roots of the equation
plot(1,0,'ro','markersize',15)
eq0=[-F,0;0,-(F+k)]

 A-20
eig0=eig(eq0)

r=roots([F+k,-F,F^2+F*k]);
r=sort(r);
if isreal(r)==1
 plot((F+k)./r(1),r(1),'r+','markersize',15)
 plot((F+k)./r(2),r(2),'ro','markersize',15)
end
text(umax-.1*(umax-umin),vmax-.1*(vmax-
vmin),[num2str(umax),',',num2str(vmax)]);
text(umin+.1*(umax-umin),vmin+.1*(vmax-
vmin),[num2str(umin),',',num2str(vmin)]);

b=r(1);
a=(F+k)/b;
eq1=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)]
eig1=eig(eq1)

b=r(2);
a=(F+k)/b;
eq2=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)]
eig2=eig(eq2)

for j=linspace(umin,umax,spa)
 for m=linspace(vmin,vmax,spa)
 [t,u]=ode45('gal_pearson0deqn',time,[j,m],[],F,k);
 plot(u(:,1),u(:,2))
 end
end

xlabel('u')
ylabel('v')
title(['F=',num2str(F),' k=',num2str(k), ' time=',num2str(time)])
axis([umin,umax,vmin,vmax])
%M(:,n)=getframe;
n=n+1;
end

GAL_PEARSON0DEQN
%function used in Gray Scott Analysis functions for the N=0
differential equation
function dabdt=gal_pearson0deqn(t,ab,flag,F,k)
dabdt(1,1)=-ab(1).*ab(2).^2+F*(1-ab(1));
dabdt(2,1)=ab(1).*ab(2).^2-(F+k)*ab(2);

 A-21

GAL_DDINSTABILITY
clear all
F=.0154
k=.04
du=.00002
dv=.00001

n=1;
modes=0:10:5000;
for mn=modes;
 b=(F+sqrt(F^2-4*F*(F+k)^2))/(2*(F+k));
 a=(F+k)/b;
 M=[-b^2-F-mn*du,-2*a*b;b^2,2*a*b-(F+k)-mn*dv];
 eva=eig(M);
 y(n)=real(eva(2));
 n=n+1;
end
plot(modes,y);

	Project Abstract
	Introduction.pdf
	Reaction-Diffusion Equations and Morphogenesis using Galerkin Methods

	Reaction Diffusion.pdf
	2. Reaction-Diffusion Equations

	Galerkin.pdf
	3. The Galerkin Spectral Method
	
	
	
	Table 3.1

	Type of Boundary Conditions
	Fourier basis to use
	
	
	
	Step 4- Solve the initial value problem for time:
	
	Figure 3.2 Galerkin approximation to the Burgers equation for various N, e=.001, t=1.

	Example 4: The heat equation in two dimensions

	Results.pdf
	Results

	bibliography.pdf
	Bibliography

	Matlab Programs.pdf
	APPENDIX: MATLAB programs
	Table Of Contents
	
	
	
	Galerkin MethodA-2
	GAL_ABRECONSTRUCTA-15
	Gray-Scott AnalysisA-16
	Galerkin Method
	GAL_ALLENCAHNQUICK
	GAL_ALLENCAHNQUICKDEQN
	GAL_BURGERQUICK
	GAL_BURGERQUICKDEQN
	function da=gal_burgerquickdeqn(t,a,eps)
	%differential equation referenced in GAL_BURGERDEQN
	global P2 eps2
	NN=length(a);
	for j=1:NN
	nonlin(j)=a'*P2(:,:,j)*a;
	end
	da=-pi^2*eps2*([1:NN]'.^2).*a-2*nonlin';
	GAL_BURGERDISPLAY
	GAL_HEAT
	GAL_HEATDEQN
	GAL_PEARSON2D

	GAL_PEARSON2DDEQN
	GAL_1DPDEDISPLAY
	GAL_2DPDEDISPLAY
	function M=gal_2Dpdedisplay(u,X,t)
	%produces movie images for given 2D pde data in the form:
	%t= time vector
	
	
	
	
	GAL_ABRECONSTRUCT

	Gray-Scott Analysis
	
	
	
	GAL_2DGS_N0EIGENVALS
	GAL_2DGS_HOPFFIND
	GAL_2DGS_FIELDPLOTS
	GAL_PEARSON0DEQN
	GAL_DDINSTABILITY
	clear all
	F=.0154
	k=.04
	du=.00002
	dv=.00001
	n=1;
	modes=0:10:5000;
	for mn=modes;
	b=(F+sqrt(F^2-4*F*(F+k)^2))/(2*(F+k));
	a=(F+k)/b;
	M=[-b^2-F-mn*du,-2*a*b;b^2,2*a*b-(F+k)-mn*dv];
	eva=eig(M);
	y(n)=real(eva(2));
	n=n+1;
	end
	plot(modes,y);
	Ring of CellsB-1

	Ring of Cells
	CELL_MAT:
	CELL_MOVIE
	
	
	GAL_FLETCHERDEQN
	function s=gal_fletcherDEQN(t,v)
	global dpoly
	ld=length(dpoly);
	dpolynorm=dpoly/dpoly(1);
	if ld==3
	s=-dpolynorm(2)*v-dpolynorm(3);
	else
	for j=1:ld-3
	s(j)=v(j+1);
	end
	s(ld-2)=-dpolynorm(ld);
	for j=1:ld-2
	s(ld-2)=s(ld-2)-dpolynorm(j+1)*v(ld-1-j);
	end
	s=s';
	end
	GAL_FLETCHERODE

